首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of columnar and thin-layer chromatography the presence of carotenoids in Ostrea edulis L. (Bivalvia: Ostreacea) from the Lagoon Venice (Italy), was studied.The following carotenoids were founds: -, -, -carotene, -carotene epoxide, lutein (free and epoxide from), zeaxanthin, diatoxanthin, mutatoxanthin and astaxanthin. The dominating carotenoids were lutein.The total contents varied within the range of 5.4–8.1 µg/g wet weight.  相似文献   

2.
B. Czeczuga 《Hydrobiologia》1980,70(3):197-199
The author investigated the presence of various carotenoids in three species of the Syngnathidae family by means of columnar and thin-layer chromatography. The investigations revealed the presence of the following carotenoids: canthaxanthin, lutein, lutein epoxide, zeaxanthin, astaxanthin (free and ester form) and 4-hydroxy-4-keto--carotene. Ketocarotenoids (astaxanthin and canthaxanthin) comprised the greatest part  相似文献   

3.
B. Czeczuga 《Hydrobiologia》1981,76(1-2):13-15
By means of columnar and thin-layer chromatography, the presence of carotenoids in Gordius aquaticus L. (Nematomorpha, Nemathelminthes) from deep wells was studied.The investigations revealed the presence of the following carotenoids: -carotene, mutatochrome, -cryptoxanthin, ,-carotene epoxide,lutein, zeaxanthin and astaxanthin ester.  相似文献   

4.
We succeeded in isolating a novel cDNA involved in astaxanthin biosynthesis from the green alga Haematococcus pluvialis, by an expression cloning method using an Escherichia coli transformant as a host that synthesizes -carotene due to the Erwinia uredovora carotenoid biosynthesis genes. The cloned cDNA was shown to encode a novel enzyme, -carotene ketolase (-carotene oxygenase), which converted -carotene to canthaxanthin via echinenone, through chromatographic and spectroscopic analysis of the pigments accumulated in an E. coli transformant. This indicates that the encoded enzyme is responsible for the direct conversion of methylene to keto groups, a mechanism that usually requires two different enzymatic reactions proceeding via a hydroxy intermediate. Northern blot analysis showed that the mRNA was synthesized only in the cyst cells of H. pluvialis. E. coli carrying the H. pluvialis cDNA and the E. uredovora genes required for zeaxanthin biosynthesis was also found to synthesize astaxanthin (3S, 3S), which was identified after purification by a variety of spectroscopic methods.  相似文献   

5.
The level of an important carotenoid (-carotene) in the gut of Periplaneta americana depends on the content of the carotenoid in food: a carotenoid-fortified diet causes accumulation of -carotene up to 10 g/g wet weight, while on a carotenoid-deficient diet the level of this substance is low (0.7 g/g wet weight). In the eye, in contrast to the gut, a constant level of -carotene (1.3-1.4 g/g wet weight) is found regardless of the diet. This phenomenon remained unchanged over three years of feeding of the cockroaches with the carotenoid-deficient diet, suggesting that P. americana produces carotenoids by de novo biosynthesis. This suggestion was confirmed in experiments using intraperitoneal injection of the exogenous carotenoid biosynthesis precursor [14C]mevalonic acid pyrophosphate followed by extraction of carotenoid and chromatographic purification of the labeled product. Injection of 3.4 nmoles [14C]mevalonic acid pyrophosphate transiently increased the -carotene content in eyes on days 2 and 4 after injection of the label. Purification of radiolabeled carotenoids from eye and gut by the transfer of carotenoids into a less polar solvent, alkaline hydrolysis (saponification), and chromatography on alumina and cellulose columns decreased the specific radioactivity to a constant level that cannot be further decreased by repeated chromatography. The elution profile of these purified preparations of -carotene after chromatography is characterized by coincidence of symmetric peaks of count and absorption. We suggest that to create the optimal carotenoid concentration in the eye, P. americana uses two biochemical mechanism: 1) it accumulates carotenoids in reserve in the gut when abundant supplies of carotenoids are available in the diet; 2) it synthesizes carotenoids de novo when its food is deficient in these compounds.  相似文献   

6.
The singlet oxygen quenching activities of carotenoids, -carotene, free astaxanthin, its monoester and its diester, were examined in vitro by a simple and rapid method for the measurement of Methylene Blue-sensitized photooxidation of linoleic acid in the hexane/ethanol solvent system. The concentrations of carotenoids, -carotene, free astaxanthin, its mono- and di-ester, required for 50% inhibition of lipid oxidation were 40, 8, 9, and 0 M in 100% ethanol and, 14, 16, 10, and 7 M in 50% (v/v) hexane in ethanol, respectively. Astaxanthin esters function as powerful antioxidant agents under both hydrophobic and hydrophilic conditions.  相似文献   

7.
Like other carotenoid-producing organisms, Phaffia rhodozyma, a red astaxanthin-producing yeast, is supposed to synthesize carotenoids by the following steps: formation of phytoene from geranylgeranyl pyrophosphate, dehydrogenation of phytoene to lycopene, cyclization of lycopene to -carotene and oxidation of the latter to astaxanthin. Mutagenic treatments generated in P. rhodozyma a wide diversity of colour variants ranging from white to dark red. The identification of the corresponding carotenoid compounds revealed the occurrence of -carotene-accumulating strains, phytoene-accumulating strains, and strains lacking any carotenoid compound. These classes of strains are likely to result from alterations in, respectively, the oxidation of -carotene, phytoene dehydrogenation and the phytoene synthetase step. Except for the cyclization of lycopene to -carotene, all the steps of carotenogenesis in P. rhodozyma are represented by the above mutants. Furthermore, astaxanthin-overproducing mutants were also selected; they are likely to be affected in some upstream step, and certainly before -carotene, as after an additional mutagenesis they generated oxidaseless strains that, in this case, overproduce -carotene. The latter strains appear very promising for biotechnological production of natural -carotene.  相似文献   

8.
Summary On t.l.c. plates 125I-cholera toxin binds to a disialoganglioside tentatively identified as GDlb with about 10 times less capacity than to ganglioside GM1. Binding of labeled toxin to both gangliosides was abolished in presence of excess amounts of unlabeled B subunit. Ganglioside extracts from human or pig intestinal mucosa showed toxin binding to gangliosides GM1 and GD1b. In ganglioside-containing lipid monolayers the penetration of the toxin was independent of the ganglioside binding capacity.Abbreviations GM2 Gal-NAc14Gal(3-2NeuAc)14G1c1Cer - GM1 Gal3Ga1-NAc14Gal(32NeuAc)14G1c11Cer - GD1a NeuAc23Ga113Gal-NAc14Gal(32NeuAc)14G1c11Cer - GD1b Gall3Gal-NAcl4Gal(32NeuAc82NeuAc)14Glc11Cer - GT1b NeuAc23Ga113Ga1-NAcal4Gal(3-2NeuAc82NeuAc)14G1c11Cer - dpPC 1,2-hexadecanoyl-sn-glycero-3-phosphocholine - dpPE 1,2-hexadecanoyl-sn-glycero-3-phosphoethanolamine  相似文献   

9.
The neutral carotenoids of wild-type Neurospora crassa and of carotenoid mutants at four discrete genetic loci were isolated using gradient elution chromatography on deactivated alumina columns. Carotenoids were identified by absorption spectrophotometry and thin layer cochromatography with carotenoid standards. Phytoene, phytofluene, -carotene, -carotene, neurosporene, torulene, lycopene, and 3,4-dehydrolycopene were isolated from wild type. Phytoene, phytofluene, -carotene, -carotene, neurosporene, -carotene, lycopene, and one unknown carotenoid, tentatively identified as 15,15-cis--carotene, were isolated from a yellow mutant, ylo-1. ylo-1 also contained residual carotenoids having similar absorption spectra to, but very different chromatographic behavior from, phytofluene, -carotene, -carotene, and lycopene. Albino and colored al-1 mutants contained large amounts of phytoene and only traces of other neutral carotenoids. Albino al-2 and al-3 mutants contained only traces of neutral carotenoids.  相似文献   

10.
Incubation of synthetic Man\1-4GlcNAc-OMe, GalNAc1-4GlcNAc-OMe, Glc1-4GlcNAc-OMe, and GlcNAc1-4GlcNac-OMe with CMP-Neu5Ac and rat liver Gal1-4GlcNAc (2-6)-sialyltransferase resulted in the formation of Neu5Ac2-6Man1-4GlcNAc-OMe, Neu5Ac2-6GalNAc1-4GlcNAc-OMe, Neu5Ac2-6Glc1-4GlcNAc-OMe and Neu5Ac2-6GlcNAc1-4GlcNAc-OMe, respectively. Under conditions which led to quantitative conversion of Gal1-4GlcNAc-OEt into Neu5Ac2-6Gal1-4GlcNAc-OEt, the aforementioned products were obtained in yields of 4%, 48%, 16% and 8%, respectively. HPLC on Partisil 10 SAX was used to isolate the various sialyltrisaccharides, and identification was carried out using 1- and 2-dimensional 500-MHz1H-NMR spectroscopy.Abbreviations 2D 2-dimensional - CMP cytidine 5-monophosphate - CMP-Neu5Ac cytidine 5-monophospho--N-acetylneuraminic acid - COSY correlation spectroscopy - DQF double quantum filtered - HOHAHA homonuclear Hartmann-Hahn - MLEV composite pulse devised by M. Levitt - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

11.
The carotenoids in the molluscsClanculus cruciatus, Patella coerulea, Mytilus galloprovincialis, Sepia officinalis andLoligo vulgaris from the Adriatic sea were investigated. Their presence was determined by means of columnar and thin-layer chromatography. The following carotenoids were found inC. cruciatus; mytiloxanthin-like, lutein, lutein ester, zeaxanthin and astaxanthin-like; inP. coerulea: mytiloxanthin-like, lutein, lutein ester, lutein-5,6-epoxide, zeaxanthin and astaxanthin-like; inM. galloprovincialis: -carotene, mytiloxanthin-like, lutein, lutein ester, lutein-5,6-epoxide and zeaxanthin; inS. officinalis: -carotene, lutein, lutein ester, tunaxanthin and zeaxanthin; inL. vulgaris: -carotene, -carotene, -carotene, -cryptoxanthin, isocryptoxanthin, isorenieratene, capsanthin, capsorubin, mutatochrome, triophaxanthin, zeaxanthin, 4-hydroxy--carotene and 4-keto--carotene  相似文献   

12.
The occurrence and contents of carotenoids in different body parts were investigated by column chromatography and TLC in Micropterus salmoides (Lalép).The following carotenoids were found: -carotene, -cryptoxanthin, -cryptoxanthin, echinenone, canthaxanthin, lutein, zeaxanthin, neothxanthin, tunaxanthin, -doradexanthin, -doradexanthin, idoxanthin, astaxanthin, astaxanthin ester, mutatochrome and mutatoxanthin.Their total contents varied within the range of 0.071–1.691 µg/g wet weight.  相似文献   

13.
Light and antimycin markedly affected growth and carotenoid synthesis by Phaffia rhodozyma. Exposure of the yeast to high light intensities on agar plates resulted in growth inhibition and decreased carotenoid synthesis. The carotenoid compositions of the yeast were also notably changed by light. -zeacarotene increased, whereas -carotene and xanthophylls decreased including astaxanthin, phoenicoxanthin, and 3-hydroxy-3, 4-didehydro-,-caroten-4-one (HDCO). In liquid medium, growth of the wild-type strain (UCD-FST-67-385) was inhibited by antimycin, but this inhibition was relieved by exposure to light. Light also stimulated carotenoid synthesis about twofold in these antimycin-treated cells. Light may have rescued growth by induction of an alternative oxidase system which facilitated electron disposal when the main respiratory chain was inhibited by antimycin. Isolation and characterization of the oxidase enzymes should be useful in strain development for increased carotenoid production.Abbreviations DCIP 2,6-dichlorophenol-indophenol - HDCO 3-hydroxy-3, 4-didehydro-,-caroten-4-one, PG-n-propyl gallate - SHAM salicylhydroxamic acid - TTFA thenoyltrifluoroacetone  相似文献   

14.
We reported previously that the Rhodococcus erythropolis strain AN12 synthesizes the monocyclic carotenoids 4-keto -carotene and -carotene. We also identified a novel lycopene -monocyclase in this strain. Here we report the identification of the rest of the carotenoid synthesis genes in AN12. Two of these showed apparent homology to putative phytoene dehydrogenases. Analysis of Rhodococcus knockout mutants suggested that one of them ( crtI) encodes a phytoene dehydrogenase, whereas the other ( crtO) encodes a -carotene ketolase. Expression of the -carotene ketolase gene in an Escherichia coli strain which accumulates -carotene resulted in the production of canthaxanthin. In vitro assays using a crude extract of the E. coli strain expressing the crtO gene confirmed its ketolase activity. A crtO homologue (DR0093) from Deinococcus radiodurans R1 was also shown to encode a -carotene ketolase, despite its sequence homology to phytoene dehydrogenases. The Rhodococcus and Deinococcus CrtO ketolases both catalyze the symmetric addition of two keto groups to -carotene to produce canthaxanthin. Even though this activity is similar to the CrtW-type of ketolase activity, the CrtO ketolases show no significant sequence homology to CrtW-type ketolases. The presence of six conserved regions may be a signature for the CrtO-type of -carotene ketolases.Communicated by E. Cerdá-Olmedo  相似文献   

15.
The specificity of induction of cellulose- and xylan-degrading enzymes was investigated on the yeast strain Trichosporon cutaneum CCY 30-5-4 using series of compounds structurally related to cellulose and xylan, including monosaccharides, glycosides, glucooligosaccharides and xylooligosaccharides. Determination of activities of secreted cellulase and -xylanase, intracellular, cell wall bound and extracellular -glucosidase and -xylosidase revealed that: (1) The synthesis of xylan-degrading enzymes is induced in the cell only by xylosaccharides, 1,3--xylobiose, 1,2--xylobiose, 1,4--xylosyl-L-arabinose, 1,4--xylobiose and thioxylobiose being the best inducers. The xylan-degrading enzymes show different pattern of development in time and discrete cellular localization, i.e. intracellular -xylosidase precedes extracellular -xylanase. (2) A true cellulase is not inducible by glucosaccharides and cellulose. Negligible constitutive cellulase activity was detected which was about two orders lower than an induced cellulase in the typical cellulolytic fungus Trichoderma reesei QM 9414. (3) The best inducer of intracellular -glucosidase splitting cellobiose was thiocellobiose in a wide range of concentration (0.1–10 mM), whereas xylosaccharides at high concentrations induced -xylosidase of xylobiose type and a non-specific aryl -D-glucosidase.The results were confirmed by growing cells on cellulose and xylan. T. cutaneum was found to be a xylan-voracious yeast, unable to grow on cellulose.  相似文献   

16.
Carotenoids are a class of fat-soluble antioxidant vitamin compounds present in maize (Zea mays L.) that may provide health benefits to animals or humans. Four carotenoid compounds are predominant in maize grain: -carotene, -cryptoxanthin, zeaxanthin, and lutein. Although -carotene has the highest pro-vitamin A activity, it is present in a relatively low concentration in maize kernels. We set out to identify quantitative trait loci (QTL) affecting carotenoid accumulation in maize kernels. Two sets of segregating families were evaluated—a set of F2:3 lines derived from a cross of W64a x A632, and their testcross progeny with AE335. Molecular markers were evaluated on the F2:3 lines and a genetic linkage map created. High-performance liquid chromatography was performed to measure -carotene, -cryptoxanthin, zeaxanthin, and lutein on both sets of materials. Composite interval mapping identified chromosome regions with QTL for one or more individual carotenoids in the per se and testcross progenies. Notably QTL in the per se population map to regions with candidate genes, yellow 1 and viviparous 9, which may be responsible for quantitative variation in carotenoids. The yellow 1 gene maps to chromosome six and is associated with phytoene synthase, the enzyme catalyzing the first dedicated step in the carotenoid biosynthetic pathway. The viviparous 9 gene maps to chromosome seven and is associated with -carotene desaturase, an enzyme catalyzing an early step in the carotenoid biosynthetic pathway. If the QTL identified in this study are confirmed, particularly those associated with candidates genes, they could be used in an efficient marker-assisted selection program to facilitate increasing levels of carotenoids in maize grain.Communicated by P. Langridge  相似文献   

17.
With increasing concentrations in the growth medium of the cyclization inhibitors nicotine or 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) the previously identified bicyclic carotenoids of Rhizobium lupini (2,3,2,3-tetrahydroxy-,-caroten-4-one and 2,3,2,3-tetrahydroxy-,-carotene) were successively replaced by hitherto unknown monocyclic carotenoids. By application of mass and nuclear magnetic resonance spectroscopy 3 carotenoids were identified as 2,3-trans-dihydroxy-,-caroten-4-one, 2,3-trans-dihydroxy-,-carotene, and 3-hydroxy-,-caroten-4-one. A further compound was tentatively established as (2- or 3-)monohydroxy-,-carotene. It was found that other inhibitors such as diphenylamine or 4-chloro-5-(dimethylamino)-2-,,(trifluoro-m-tolyl)-3-(2H)-pyridazinone (San 6706) did not affect the pigment pattern. The results are discussed in relation to carotenoid biosynthesis in Rhizobium lupini.Abbreviations CPTA 2-(4-chlorophenylthio)-triethylamine hydrochloride - San 6706 4-chloro-5-(dimethylamino)-2-,,-(trifluoro-m-tolyl)-3-(2H)-pyridazinone  相似文献   

18.
Rhodotorula glutinis and Sporobolomyces roseus, grown under different aeration regimes, showed differential responses in their carotenoid content. At higher aeration, the concentration of total carotenoids increased relative to the biomass and total fatty acids in R. glutinis, but the composition of carotenoids (torulene > -carotene > -carotene > torularhodin) remained unaltered. In contrast, S. roseus responded to enhanced aeration by a shift from the predominant -carotene to torulene and torularhodin, indicating a biosynthetic switch at the -carotene branch point of carotenoid biosynthesis. The overall levels of total carotenoids in highly aerated flasks were 0.55 mol-percent and 0.50 mol-percent relative to the total fatty acids in R. glutinis and S. roseus (respectively), and 206 and 412 g g–1 dry weight (respectively).  相似文献   

19.
Summary Mutants were produced by ultraviolet irradiation of the mould Epicoccum nigrum Link. The qualitative and quantitative formation of carotenoid pigments was studied. In addition to the four carotenoids present in the wild-type strain 5-I-3 several other carotenoids were isolated and identified.The presence of these pigments is discussed. The results support the proposed pathway for the biosynthesis of rhodoxanthin, 3,3-diketo-retro--carotene, from -carotene.  相似文献   

20.
    
In this investigation, an overlapping set of synthetic peptides spanning the entire primary structures of the -subunit of bovine and human thyrotropin, bTSH and hTSH respectively, have been prepared to aid the delineation of the amino acid sequence regions involved in two spatially related epitopes of bTSH. These peptides were then evaluated for their ability to inhibit the binding of two anti-hTSH monoclonal antibodies, designated mAb279 and mAb299, to radiolabeled I125-bTSH using competitive radioimmunoassay procedures. Synthetic peptides related to the sequence region b/hTSH[56–68] were found to specifically inhibit the binding of I125-bTSH to mAb299, whilst having no effect on the binding of mAb279. In previous studies we have shown that mAb279 and mAb299 recognise epitopic sites located within the receptor-binding site of the TSH -subunit. This investigation has therefore permitted identification of a contribution to the receptor binding site from the TSH[56–68] sequence, which forms part of the L3 loop region of the TSH -subunit that is held in close proximity to the L1 loop region and the C-terminus of the TSH - subunit by the disulphide bonds TSH[Cys16- Cys67] and TSH[Cys19-Cys105]. This finding is in agreement with previous investigations which have shown that TSH[Tyr59] and TSH[Tyr74] are also associated with the mAb299 epitope site, as well as contributing to the receptor binding region of the TSH -subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号