首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, microwave treated Salvadora oleoides (MW-SO) has been investigated as a potential biosorbent for the removal of toxic methyl violet dye. A batch adsorption method was experimented for biosorptive removal of toxic methyl violet dye from the aqueous solution. The effect of various operating variables, viz., adsorbent dosage, pH, contact time and temperature on the removal of the dye was studied and it was found that nearly 99% removal of the dye was possible under optimum conditions. Kinetic study revealed that a pseudo-second-order mechanism was predominant and the overall process of the dye adsorption involved more than one step. Hence, in order to investigate the rate determining step, intra-particle diffusion model was applied. Adsorption equilibrium study was made by analyzing Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) adsorption isotherm models and the biosorption data was found to be best represented by the Langmuir model. The biosorption efficiency of MW-SO was also compared with unmodified material, Salvadora oleoides (SO). It was found that the sorption capacity (qmax) increased from 58.5 mg/g to 219.7 mg/g on MW treatment. Determination of thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) confirmed the spontaneous, endothermic and feasible nature of the adsorption process. The preparation of MW-SO did not require any additional chemical treatment and a high percentage removal of methyl violet dye was obtained in much lesser time. Thus, it is in agreement with the principles of green chemistry. The results of the present research work suggest that MW-SO can be used as an environmentally friendly and economical alternative biosorbent for the removal of methyl violet dye from aqueous solutions.  相似文献   

2.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

3.
Carbon prepared from silk cotton hull was used to remove a textile dye (reactive blue MR) from aqueous solution by an adsorption technique under varying conditions of agitation time, dye concentration, adsorbent dose and pH. Adsorption depended on solution pH, dye concentration, carbon concentration and contact time. Equilibrium was attained with in 60 min. Adsorption followed both Langmuir and Freundlich isotherm models. The adsorption capacity was found to be 12.9 mg/g at an initial pH of 2+/-0.2 for the particle size of 125-250 microm at room temperature (30+/-2 degrees C).  相似文献   

4.
A barley straw was modified by a surfactant, cetylpyridinium chloride, and used as an adsorbent for acid (acid blue 40) and reactive dye (reactive black 5) adsorption in aqueous solution. Characterization of the modified barley straw was performed using N2 adsorption, titration, and FT-IR analysis. It was found that the surfactant modified barley straw exhibits higher adsorption to acid blue 40 than reactive black 5 and adsorption of the dyes is influenced by several parameters such as dye initial concentration, adsorbent dosage, solution pH, and adsorption temperature. Adsorption isotherms show that maximum adsorption of acid blue 40 and reactive black 5 is 1.02 × 10−4 and 2.54 × 10−5 mol/g, respectively. Desorption studies show that both dyes are strongly bounded with the adsorbent and exhibit low desorption.  相似文献   

5.
This article describes the use of a cationized starch-based material as new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 (AB 25) from aqueous solutions. Batch adsorption studies concerning the effects of contact time, pH and temperature are presented and discussed. Adsorption experimental data showed that: (i) the process was uniform and rapid: adsorption of dye reached equilibrium in 50 min in the wide pH range of dye solutions; (ii) adsorption kinetics followed the pseudo-second order model; (iii) the Langmuir model yielded a much better fit than the Freundlich model for the dye concentration range under study; (iv) this adsorbent exhibited interesting adsorption capacities: on the basis of the Langmuir analysis, the maximum adsorption capacity was determined to be 322 mg of dye per gram of material at 25 degrees C; (v) the adsorption capacity decreased with increasing temperature; and (vi) the negative value of free energy change indicated the spontaneous nature of adsorption.  相似文献   

6.
The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.  相似文献   

7.
Aerated and rotated mode adsorption experiments were carried out for the removal of Congo red from aqueous solution using native and pre-treated mycelial pellets/biomass of Trametes versicolor. The effect of process parameters like contact time, dosage of adsorbent, adsorbate concentration and pH on adsorption was investigated. Higher the dye concentration lower was the adsorption. Equilibrium time was attained at 90 min. Increase in biomass dosage increased the adsorption. Experimental data were analyzed by the Langmuir and Temkin isotherms. Adsorption capacity (Q(0)) of autoclaved biomass was 51.81 mg/g, which was higher than other biomass studied. The second order kinetic model by Ho and Mckay described well the experimental data. Acidic pH was favorable for the adsorption of Congo red. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. Among the native and pre-treated biomass studied, autoclaved biomass showed a better adsorption capacity. Utilization of autoclaved biomass is much safer as it does not pose any threat to environment. Aerated mode showed a better adsorption capacity when compared to rotated mode.  相似文献   

8.
In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL. Adsorption was maximum for both Cd(II) and Zn(II) at pH 8.0. Adsorption kinetic curves were obtained and could be fit by the pseudo second-order adsorption model. An analysis of equilibrium adsorption data using the Langmuir isotherm model indicated that the maximum adsorption capacity of CTS-SX-CL was higher than that of CTS-CL for both ions investigated. The adsorption capacity increased 74% for Cd(II).  相似文献   

9.
Adsorption of hydrogen ions and dye cations by washed bacterial cells shows a reciprocal relationship. Apparently, H-ions and crystal violet ions are held by the cell at the same adsorption centers, and the influence of H+ on basic dye adsorption is one of direct competition or replacement The adsorption of H+ and acid fuchsin is similar in that an increase is noted as the pH of the suspension is lowered.  相似文献   

10.
Laboratory investigation of the potential use of Penicillium sp. as biosorbent for the removal of acid violet dye from aqueous solution was studied with respect to pH, temperature, biosorbent, initial dye concentrations. Penicillium sp. decolourizes acid violet (30 mg l−1) within 12 h agitation of 150 rpm at pH 5.7 and temperature of 35 °C. The pellets exhibited a high dye adsorption capacity (5.88 mg g−1) for acid violet dye over a pH range (4–9); the maximum adsorption was obtained at pH 5.7. The increase of temperature favored biosorption for acid violet, but the optimum temperature was 35 °C. Adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and kinetic studies showed that the biosorption process follows pseudo-first-order rate kinetics with an average rate constant of 0.312 min−1. Isotherm experiments were conducted to determine the sorbent–desorption behavior of examined dye from aqueous solutions using Langmuir and Freundlich equations. Langmuir parameter indicated a maximum adsorption capacity of 4.32 mg g−1 for acid violet and RL value of 0.377. Linear plot of log qe vs log Ce shows that applicability of Freundlich adsorption isotherm model. These results suggest that this fungus can be used in biotreatment process as biosorbent for acid dyes.  相似文献   

11.
A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC.  相似文献   

12.
Cibacron Blue 3GA was immobilized on Sepharose CL-6B to obtain a highly substituted dye-ligand adsorbent which dye concentration was 17.4?μmol dye per gram wet gel. This adsorbent had a highly binding capacity for bovine serum albumin (BSA). The effects of ionic strength on the adsorption and desorption of BSA to the adsorbent were studied. Adsorption isotherms were expressed by the Langmuir model. The quantitative relationships between the model parameters and the ionic strength were obtained. The desorptions were performed by adding salt to the BSA solutions in which adsorption equilibria had been reached. Adding salt to the solution resulted in the desorption of the bound protein. It was found that the isotherm obtained from the desorption experiments agreed well to the isotherm obtained from the adsorption experiments at the same ionic strength. The result demonstrated that the adsorption of BSA to the highly substituted adsorbent was reversible.  相似文献   

13.
Moringa oliferia seed pod was modified using orthophosphoric acid (H3PO4) and used as adsorbent for sequestering Rhodamine B (Rh-B) dye from aqueous solution. The acid-modified adsorbent (MOSPAC) was characterized using Scanning Electron microscopy (SEM), Fourier Transform Infra Red (FTIR), Energy Dispersive X-ray (EDX), pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques, respectively. Operational parameters such as contact time, initial dye concentration, adsorbent dosage, pH and solution temperature were studied in batch process. Optimum dye adsorption was observed at pH 3.01. Equilibrium adsorption data was tested data using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Langmuir isotherm model fitted most with maximum monolayer adsorption capacity of 1250 mg g–1. Pseudo-second-order kinetic model provided the best correlation for the experimental data. Thermodynamic study showed that the process is endothermic, spontaneous and feasible. MOSPAC is an effective adsorbent for the removal of RhB dye from aqueous solutions.  相似文献   

14.
Adsorption of zinc was studied using chemically modified newspaper pulp as an adsorbent in the aqueous medium. Quantitative chemical analysis showed the presence of trace quantities of some inorganic elements along with phosphorous in TNP. The experimental adsorption data fitted reasonably well to both Freundlich and Langmuir isotherm. pHzpc of TNP was 5.1, which indicated that the adsorbent was more potential for cationic adsorption. The adsorption kinetic data followed a pseudo-second order model for zinc. Optimum Zn(2+) loading was 9.20 mg/g for 10.31 mg/l initial zinc concentration at pH 5.80. Zn(2+) loading on TNP was dependent on initial zinc concentration. TNP was a potential adsorbent for the removal of Zn from the effluent of electroplating industry.  相似文献   

15.
Adsorption techniques are widely used to remove industrial wastewater contaminants, especially non-biodegradable colourants. In this study, Iranian zeolite clinoptilolite was synthesised using magnetic iron oxide as an inexpensive and efficient adsorbent. The results showed that using natural zeolite, the removal efficiency of 26.8.6% at pH?=?3 reached 48% at pH?=?9. However, the adsorption capacity of the modified clinoptilolite did not change by increasing pH; it ranged from 96.4% to 98.6%. Moreover, increase in the initial concentration of the dye did not have any effects on the removal efficacy of the modified clinoptilolite. Using natural zeolite, on the other hand, the adsorption capacity showed a significant decrease and reached less than 10% at the 200?mg/l dye concentration. At the optimal contact time of 45?min, the dye removal rate by the modified zeolite was more than 98% at the optimal dose of 0.5?g. Indeed, the adsorption isotherm complied with Freundlich equation. Overall, the results showed that in comparison to the natural zeolite, the adsorption capacity of the clinoptilolite modified by iron nanoparticles increased significantly due to the uniformity of the cavities and increase in the surface of the adsorbent.  相似文献   

16.
The retention profile of methylene blue from aqueous solutions onto the solid adsorbent date pits has been investigated in a batch system. The characterization and adsorption efficiency for methylene blue was evaluated using date pits. Fourier Transform Infra-Red, Scanning Electron Microscope, Brunauer–Emmett–Teller analysis were performed to determine the characteristics of the material. The effect of contact time, initial dye concentration, adsorbent dosage, temperature, and solution pH were investigated. The adsorption was found to increase with increasing time, decreasing concentration of dye, decreasing temperature and increasing dosage up to equilibrium values which was 20 min, 25°C, and 0.1 g adsorbent, respectively. The adsorption was favorable at high and low pH (pH 3, pH 7). The adsorption equilibrium data were best fitted by Freundlich isotherm. The adsorption kinetics was found to follow the pseudo second order kinetic model. Thermodynamic parameters such as free energy, enthalpy, and entropy were calculated and found to be ?4.6 kJ/mole, ?7.9 kJ/mole, and ?11.8 kJ/mole, respectively. The thermodynamic parameters of the uptake of methylene blue onto the date pits indicated that, the process is exothermic and proceeds spontaneously at low temperature. A single stage batch adsorber was designed for adsorption of methylene blue by Date Pits based on optimum isotherm.  相似文献   

17.
The removal of color from aquatic systems caused by presence of synthetic dyes is extremely important from the environmental viewpoint because most of these dyes are toxic, mutagenic and carcinogenic. In this present study, the yellow passion fruit (Passiflora edulis Sims. f. flavicarpa Degener) peel a powdered solid waste, was tested as an alternative low-cost adsorbent for the removal of a basic dye, methylene blue (MB), from aqueous solutions. Adsorption of MB onto this natural adsorbent was studied by batch adsorption isotherms at room temperature. The effects of shaking time and pH on adsorption capacity were studied. An alkaline pH was favorable for the adsorption of MB. The contact time required to obtain the maximum adsorption was 56 h at 25 degrees C. Yellow passion fruit peel may be used as an alternative adsorbent to remove MB from aqueous solutions.  相似文献   

18.
Adsorption kinetic and equilibrium of a basic dye (Astrazon Yellow 7GL) from aqueous solutions at various initial dye concentration (50-300 mg/l), pH (4-10), adsorbent dosage (2-8 g/l), particle size (354-846 microm) and temperature (30-50 degrees C) on wheat bran were studied in a batch mode operation. The result showed that the amount adsorbed of the dye increased with increasing initial dye concentration and contact time, whereas particle size and pH had no significant affect on the amount of dye adsorbed by the adsorbent. A comparison of kinetic models on the overall adsorption rate showed that dye/adsorbent system was best described by the pseudo second-order rate model. The removal rate was also dependent on both external mass transfer and intra-particle diffusion. The low value of the intraparticle diffusivity, 10(-11) cm2/s, indicated the significant influence of intraparticle diffusion on the kinetic control. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 69.06 mg/g for at pH 5.6, 303 K for the particle size of 354 microm. The experimental data yielded excellent fits with Langmuir and Tempkin isotherm equations. Different thermodynamic parameters showed that the reaction was spontaneous and endothermic in nature.  相似文献   

19.
Sugar syrup decolorization was studied using two commercial and eight beet pulp based activated carbons. In an attempt to relate decolorizing performances to other characteristics, surface areas, pore volumes, bulk densities and ash contents of the carbons in the powdered form; pH and electrical conductivities of their suspensions and their color adsorption properties from iodine and molasses solution were determined. The color removal capabilities of all carbons were measured at 1/100 (w/w) dosage, and isotherms were determined on better samples. The two commercial activated carbons showed different decolorization efficiencies; which could be related to their physical and chemical properties. The decolorization efficiency of beet pulp carbon prepared at 750 degrees C and activated for 5h using CO2 was much better than the others and close to the better one of the commercial activated carbons used. It is evident that beet pulp is an inexpensive potential precursor for activated carbons for use in sugar refining.  相似文献   

20.
Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as an adsorbent for removal of basic dyes (methylene blue – MB) from aqueous solutions. The adsorbent was prepared by microwave treatment, providing a significant reduction in processing time coupled to an increase in adsorption capacity in comparison to conventional carbonization in a muffle furnace. Batch adsorption tests were performed at 25 °C and the effects of particle size, contact time, adsorbent dosage and initial solution pH were investigated. Adsorption kinetics was better described by a second-order model. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Tempkin adsorption models, with Langmuir providing the best fit. The results presented in this study show that microwave activation presents great potential as an alternative method in the production of adsorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号