首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+.  相似文献   

2.
1. Na+ as well as Li+ move across the apical membrane through amiloride-sensitive ionic channels. 2. K+ movements across the apical membrane occur through Ba2+- and Cs+-sensitive channels which do not allow the passage of Na+ or Li+. 3. A third pathway in the apical membrane is permeable for Na+, K+, Cs+, Rb+, NH+4 and Ti+. The currents carried by these monovalent cations are blocked by Ca2+ and divalent cations as well as La3+. 4. In the urinary bladder, the Ca2+-sensitive currents are stimulated by oxytocin, activators of cytosolic cAMP and cAMP analogues. Also the oxytocin activated currents are blocked by divalent cations and La3+. 5. Nanomolar concentrations of mucosal Ag+ activate the third channel and open the pathway for movements of Ca2+, Ba2+ and Mg2+, which are known to permeate through Ca2+ channels in excitable tissues.  相似文献   

3.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

4.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

5.
Ion selectivity of divalent cations on Ba2+ inward current oscillations was examined by voltage-clamp recording in v-Ki-ras-transformed NIH/3T3 (DT) fibroblasts where repetitive transient increases in cytoplasmic Ca2+ concentration were evoked by bradykinin. Application of bradykinin onto DT cells in 50 mM Ba2+ solution initiated Ba2+ inward current oscillations. The inward currents were inhibited in equimolar Sr2+ or Ca2+ solutions. Ba2+ current oscillations were dependent upon extracellular Ba2+ concentration. The results suggest that inward current oscillations are highly selective to Ba2+.  相似文献   

6.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.  相似文献   

7.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

8.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

9.
In most macrovascular endothelial cell (EC) preparations, resting membrane potential is determined by the inwardly rectifying K+ current (I(K1)), whereas in microvascular EC the presence of I(K1) varies markedly. Cultured microvascular EC from small vessels of human omentum were examined by means of the voltage-clamp technique to elucidate the putative role of I(K1) in maintaining resting membrane potential. Macrovascular EC from human iliac artery and bovine aorta served as reference. Human omentum EC showed an outwardly rectifying current-voltage relation. Inward current was hardly sensitive to variations of extracellular [K+] and Ba2+ block suggesting lack of I(K1). However, substitution of extracellular [Na+] and/or [Cl-] affected the current-voltage relation indicating that Na+ and Cl- contribute to basal current. Furthermore, outward current was reduced by tetraethylammonium (10 mM), and cell-attached recordings suggested the presence of a Ca2+-activated K+ current. In contrast to human omentum EC, EC from human iliac artery and bovine aorta possessed inwardly rectifying currents which were sensitive to variations of extracellular [K+] and blocked by Ba2+. Thus, the lack of I(K1) in human omentum EC suggests that resting membrane potential is determined by Na+ and Cl- currents in addition to K+ outward currents.  相似文献   

10.
Voltage-dependent conductances in Limulus ventral photoreceptors   总被引:7,自引:7,他引:0       下载免费PDF全文
The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.  相似文献   

11.
Using 86Rb+ as a marker for K+ permeability, we find that extracellular Ca-EGTA influences the rate of 86Rb+ efflux from erythrocyte ghosts preloaded with 86Rb+ and "buffered" Ca2+. At an internal free Ca2+, where the rate of 86Rb+ efflux is minimal and uninfluenced by either external EGTA or external Ca2+, external Ca-EGTA at 0.2-0.5 mM can raise the flux rate to as high as can be attained by raising internal Ca2+, in the presence of an excess externally either of Ca2+ or of EGTA. Higher concentrations of Ca-EGTA (up to 1-2 mM) diminish the flux rate. External Ca-EDTA or Mg-EDTA can substitute for Ca-EGTA in enhancing and suppressing flux rate. The peak rate is insensitive to external free Ca2+ but depends on internal Ca2+; internal Mg-EDTA does not substitute for internal Ca-EGTA. Thus, the erythrocyte membrane is asymmetric with respect to its interaction with Ca2+ and Ca-EGTA. Also, 22Na+ does not substitute for 86Rb+. The peak rate of 86Rb+ flux produced by external Ca-EGTA is diminished by chlorpromazine (0.1 mM) and augmented by 1-propranolol (25 microM), in the same way as the rate produced by increasing internal Ca2+. The results suggest that external Ca-EGTA enhances the affinity of internal Ca2+ for its receptor(s) which operate the K+-gate at the inner surface of the membrane. At external concentrations of Ca-EGTA above 1-2 mM, 86Rb+ flux rate again rises with increase of Ca-EGTA. This phenomenon does not depend upon internal Ca2+, is not affected by chlorpromazine or by 1-propranolol, and is associated with an enhanced permeability to 22Na+, inulin, and haemoglobin.  相似文献   

12.
The calcium current of Helix neuron   总被引:16,自引:10,他引:6       下载免费PDF全文
Calcium current, Ica, was studied in isolated nerve cell bodies of Helix aspersa after suppression of Na+ and K+ currents. The suction pipette method described in the preceding paper was used. Ica rises to a peak value and then subsides exponentially and has a null potential of 150 mV or more and a relationship with [Ca2+]o that is hyperbolic over a small range of [Ca2+]o's. When [Ca2+]i is increased, Ica is reduced disproportionately, but the effect is not hyperbolic. Ica is blocked by extracellular Ni2+, La3+, Cd2+, and Co2+ and is greater when Ba2+ and Sr2+ carry the current. Saturation and blockage are described by a Langmuir adsorption relationship similar to that found in Balanus. Thus, the calcium conductance probably contains a site which binds the ions referred to. The site also appears to be voltage-dependent. Activation and inactivation of Ica are described by first order kinetics, and there is evidence that the processes are coupled. For example, inactivation is delayed slightly in its onset and tau inactivation depends upon the method of study. However, the currents are described equally well by either a noncoupled Hodgkin-Huxley mh scheme or a coupled reaction. Facilitation of Ica by prepulses was not observed. For times up to 50 ms, currents even at small depolarizations were accounted for by suitable adjustment of the activation and inactivation rate constants.  相似文献   

13.
E Honoré  M Lazdunski 《FEBS letters》1991,287(1-2):75-79
K+ channel openers elicit K+ currents in follicle-enclosed Xenopus oocytes. The most potent activators are the pinacidil derivatives P1075 and P1060. The rank order of potency to activate K+ currents in follicle-enclosed oocytes was: P1075 (K0.5:5 microM) greater than P1060 (K0.5:12 microM) greater than BRL38227 (lemakalim) (K0.5:77 microM) greater than RP61410 (K0.5:100 microM) greater than (-)pinacidil (K0.5:300 microM). Minoxidil sulfate, nicorandil, RP49356 and diazoxide were ineffective. Activation by the K+ channel openers could be abolished by the antidiabetic sulfonylurea glibenclamide. It was not affected by the blocker of the Ca(2+)-activated K+ channels charybdotoxin. The various K+ channel openers failed to activate glibenclamide-sensitive K+ channels in defolliculated oocytes, but BRL derivatives (K0.5 for BRL38226 is 150 microM) and RP61419 inhibited a background current. The channel responsible for this background current is K+ permeable but not fully selective for K+. It is resistant to glibenclamide. It is inhibited by Ba2+, 4-aminopyridine, Co2+, Ni2+ and La3+.  相似文献   

14.
Changes in intracellular pH affect calcium currents in Paramecium caudatum   总被引:5,自引:0,他引:5  
The relation between intracellular pH and membrane excitability was studied in the holotrich ciliate Paramecium caudatum. Intracellular pH (pHi) was measured with recessed-tip ion-sensitive microelectrodes (Thomas 1974) and electrical properties were examined by current stimulation and conventional two-electrode voltage clamp. Under normal conditions the resting pHi of Paramecium was 6.80 +/- 0.05. Intracellular alkalinization enhanced the early Ca current, while internal acidification depressed the Ca current. Both effects occurred in a voltage-independent manner. The late outward current was relatively unaffected by these alterations. Results obtained with replacement of extracellular Ca2+ by Ba2+ also support a direct effect of pHi on current through the Ca channel. Intracellular alkalinization to pH 7.15 converted graded, quasi-regenerative Ca responses elicited by injected current pulses into all-or-none action potentials. This change to all-or-none behaviour is presumed to be due to the increase in Ca current and a consequent change in the balance of inward and outward currents. Extracellular pH changes had little effect on pHi, resting membrane potential or the current-voltage relations. The intracellular pH was also independent of shifts in membrane potential. The results are consistent with a model in which Ca channel permeability is blocked by intracellular protonation of a single titratable site having an apparent dissociation constant of 6.2.  相似文献   

15.
J J Densmore  G Szabo  L S Gray 《FEBS letters》1992,312(2-3):161-164
Activation of T lymphocytes results in an increase in intracellular Ca2+ due in large part to influx of extracellular Ca2+. Using the patch clamp technique, an inward current in Jurkat T lymphocytes was observed upon depolarization from a holding potential of -90 mV but not from -60 mV. This whole-cell current was insensitive to tetrodotoxin, carried by Ba2+, and blocked by Ni2+. Occupancy of the T lymphocyte antigen receptor increased the current's magnitude. These data suggest that antigen receptor-induced Ca2+ entry in T lymphocytes may be mediated by a voltage-regulated Ca channel.  相似文献   

16.
The Ca2+-sensitive ATPase (adenosine triphosphatase) of human erythrocyte membranes is activated, not only by Ca2+ ions, but also by a series of other bivalent metal ions including Sr2+, Ba2+, Mn2+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+ and Pb2+. The degree of activation is dependent on the radius of the ion rather than on its nature, in contrast with the dissociation constant of the enzyme--metal ion complex.  相似文献   

17.
Paramecium generates a Ca2+ action potential and can be considered a one-cell animal. Rises in internal [Ca2+] open membrane channels that specifically pass K+, or Na+. Mutational and patch-clamp studies showed that these channels, like enzymes, are activated by Ca(2+)-calmodulin. Viable CaM mutants of Paramecium have altered transmembrane currents and easily recognizable eccentricities in their swimming behavior, i.e. in their responses to ionic, chemical, heat, or touch stimuli. Their CaMs have amino-acid substitutions in either C- or N-terminal lobes but not the central helix. Surprisingly, these mutations naturally fall into two classes: C-lobe mutants (S101F, I136T, M145V) have little or no Ca(2+)-dependent K+ currents and thus over-react to stimuli. N-lobe mutants (E54K, G40E+D50N, V35I+D50N) have little or no Ca(2+)-dependent Na+ current and thus under-react to certain stimuli. Each mutation also has pleiotropic effects on other ion currents. These results suggest a bipartite separation of CaM functions, a separation consistent with the recent studies of Ca(2+)-ATPase by Kosk-Kosicka et al. [41, 55]. It appears that a major function of Ca(2+)-calmodulin in vivo is to orchestrate enzymes and channels, at or near the plasma membrane. The orchestrated actions of these effectors are not for vegetative growth at steady state but for transient responses to stimuli epitomized by those of electrically excitable cells.  相似文献   

18.
IKx is a voltage-dependent K+ current in the inner segment of rod photoreceptors that shows many similarities to M-current. The depression of IKx by external Ba2+ was studied with whole-cell voltage clamp. Ba2+ reduced the conductance and voltage sensitivity of IKx tail currents and shifted the voltage range over which they appeared to more positive potentials. These effects showed different sensitivities to Ba2+: conductance was the least sensitive (K0.5 = 7.6 mM), voltage dependence intermediate (K0.5 = 2.4 mM) and voltage sensitivity the most sensitive (K0.5 = 0.2 mM). Ca2+, Co2+, Mn2+, Sr2+, and Zn2+ did not have actions comparable to Ba2+ on the voltage dependence or the voltage sensitivity of IKx tail currents. In high K+ (100 mM), the voltage range of activation of IKx was shifted 20 mV negative, as was the tau-voltage relation. High K+ did not prevent the effect of Ba2+ on conductance, but abolished its ability to affect voltage dependence and voltage sensitivity. Ba2+ also altered the apparent time-course of activation and deactivation of IKx. Low Ba2+ (0.2 mM) slowed both deactivation and activation, with most effect on deactivation; at higher concentrations (1-25 mM), deactivation and activation time courses were equally affected, and at the highest concentrations, 5 and 25 mM Ba2+, the time course became faster than control. Rapid application of 5 mM Ba2+ suggested that the time dependent currents in Ba2+ reflect in part the slow voltage-dependent block and unblock of IKx channels by Ba2+. This blocking action of Ba2+ was steeply voltage- dependent with an apparent electrical distance of 1.07. Ba2+ appears to interact with IKx channels at multiple sites. A model which assumes that Ba2+ has a voltage-independent and a voltage-dependent blocking action on open or closed IKx channels reproduced many aspects of the data; the voltage-dependent component could account for both the Ba(2+)- induced shift in voltage dependence and reduction in voltage sensitivity of IKx tail currents.  相似文献   

19.
Activation of Na-Ca exchange current by photolysis of "caged calcium".   总被引:1,自引:1,他引:0  
Intracellular photorelease of Ca2+ from "caged calcium" (DM-nitrophen) was used to investigate the Ca(2+)-activated currents in ventricular myocytes isolated from guinea pig hearts. The patch-clamp technique was applied in the whole-cell configuration to measure membrane current and to dialyze the cytosol with a pipette solution containing the caged compound. In the presence of inhibitors for Ca2+, K+, and Na+ channels, concentration jumps of [Ca2+]i induced a rapidly activating inward Na-Ca exchange current which then decayed slowly (tau approximately 500 ms). The initial peak of the inward current and the time-course of current decay were voltage-dependent, and no reversal of the current direction was found between -100 and +100 mV. The observed shallow voltage dependence can be described in terms of the movement of an apparently fractional elementary charge (+0.44e-) across an energy barrier located symmetrically in the electrical field of the membrane. The currents were dependent on extracellular Na+ with a half-maximal activation at 73 mM and a Hill coefficient of 2.8. No change of membrane conductance was activated by the Ca2+ concentration jump when extracellular Na+ was completely replaced by Li+ or N-methyl-D-glucamine (NMG) or when the Na-Ca exchange was inhibited by extracellular Ni2+, La3+, or dichlorobenzamil (DCB). The velocity of relengthening after a twitch induced by photorelease of Ca2+ was only reduced drastically when both the sarcoplasmic reticulum and the Na-Ca exchange were inhibited suggesting that all other Ca2+ removing mechanisms have a low transport capacity under these conditions. In conclusion, we have used a novel approach to study Na-Ca exchange activity with photolysis of "caged" calcium. We found that in guinea pig heart muscle cells the Na-Ca exchange is a potent mechanism for Ca2+ extrusion, is weakly voltage-dependent (118 mV for e-fold change) and can be studied without contamination with other Ca(2+)-activated currents.  相似文献   

20.
Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号