首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Relatively low or high temperatures are responsible for a variety of physiological stress responses in insects and mites. Induced thermal stress was recently associated with increased reactive oxygen species (ROS) generation, which caused oxidative damage. In this study, we examined the time-related effect of the relatively low (0, 5, 10, and 15 °C) or high (32, 35, 38, and 41 °C) temperatures on the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), and glutathione-S-transferase (GST), and the total antioxidant capacity (TEAC) of the citrus red mite, Panonychus citri (McGregor). The malondialdehyde (MDA) concentration, as a marker of lipid peroxidation in organisms, was also measured in the citrus red mite under thermal stress conditions. Results showed that SOD and GST activities were significantly increased and play an important role in the process of antioxidant response to thermal stress. Lipid peroxidation levels increased significantly (P < 0.001) and changed in a time-dependent manner. CAT and POX activity, as well as TEAC, did not vary significantly and play a minor role to remove the ROS generation. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play an important role in reducing oxidative damage in the citrus red mite.  相似文献   

2.
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400 nm, has been used worldwide in light trapping of insect pests. To gain a better understanding of the response of Helicoverpa armigera adults to UV light irradiation, we carried out a comparative proteomic analysis. Three-day-old adults were exposed to UV light for 1 h. Total proteins were extracted and separated by two-dimensional gel electrophoresis. More than 1200 protein spots were reproducibly detected, including 12 that were more abundant and 21 less abundant. Mass spectrometry analysis and database searching helped us to identify 29 differentially abundant proteins. The identified proteins were categorized into several functional groups including signal transduction, RNA processing, protein processing, stress response, metabolisms, and cytoskeleton structure, etc. This study is the first analysis of differentially expressed proteins in phototactic insects under UV light irradiation conditions and gives new insights into the adaptation mechanisms responsive to UV light irradiation stress.  相似文献   

3.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

4.
Temperature is a critical abiotic factor that causes physiological changes in arthropods. However, little is known about the effect of heat stress on the antioxidant responses of Araneae species. Hylyphantes graminicola is a dominant predator in many cropping systems in China. In the present study, the effect of short-term heat stress (36, 38, 40 or 42 °C) on the reactive oxygen species (ROS) levels, the activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], peroxidases [POD] and glutathione-S-transferases GST]), total antioxidant capacity (TAC), malondialdehyde (MDA) concentrations and survival of H. graminicola spiderlings and adults were investigated. The results showed that H. graminicola adults had a significantly higher survival rate compared to spiderlings at 40 °C. The heat stress increased ROS contents in H. graminicola. The SOD, CAT, POD and GST activities increased in spiderlings and adults under heat stress. These data suggest a defensive function for these enzymes in alleviating oxidative damage. Specifically, SOD plays a key role in reducing the high level of superoxide radicals in spiderlings and adults. Moreover, the POD and CAT capabilities for scavenging H2O2 in spiderlings were similar, and CAT may play a more important role than POD in scavenging H2O2 in adults at 42 °C. The spiderling TAC increased significantly at 40 and 42 °C, and the adult TAC was stable at 36–40 °C but decreased at 42 °C. These data suggest that TAC was insufficient in H. graminicola adults under more severe stress conditions. These results further our understanding of the physiological response of Araneae species exposed to heat stress.  相似文献   

5.
The effects of salinity (10, 17 and 35 ppt) on O2 consumption, CO2 release and NH3 excretion by crabs and oxidative stress parameters and antioxidant defenses of its tissues were reported. An increase in salinity caused a decrease in O2 consumption and CO2 release and an increase in ammonia excretion by crabs. Lipid peroxidation, protein carbonyl, H2O2 levels and total antioxidant capacity of the tissues elevated significantly at 35 ppt salinity except in abdominal muscle where H2O2 content was low. Ascorbic acid content of tissues was higher at 17 ppt salinity than at 10 and 35 ppt salinities. With increasing salinity, a gradual decrease in SOD, an increase in catalase, no change in GPx and a decrease followed by an increase in GR activities were recorded for abdominal muscle. While for hepatopancreas, an increase followed by a decrease in SOD and catalase, decrease in GPx and GR activities were noticed with increasing salinity. In the case of gills, a decrease followed by an increase in SOD, a decrease in catalase and GPx and an increase in GR activities were noted when the salinity increased from 10 ppt to 35 ppt. These results suggest that salinity modulation of oxidative stress and antioxidant defenses in Scylla serrata is tissue specific.  相似文献   

6.
Organophosphate (OP) and carbamate pesticides are anticholinesterasic agents also able to alter antioxidant defenses in different organisms. Amphibian larvae are naturally exposed to these pesticides in their aquatic environments located within agricultural areas. We studied the effect of the carbamate carbaryl (CB) and the OP azinphos methyl (AM), compounds extensively used in Northern Patagonian agricultural areas, on reduced glutathione (GSH) levels and the activities of esterases and antioxidant enzymes of the toad Rhinella arenarum larvae. Larvae were exposed 48 h to AM 3 and 6 mg/L or CB 10 and 20 mg/L. Cholinesterase and carboxylesterases were strongly inhibited by CB and AM. In insecticide-exposed larvae, carboxylesterases may serve as alternative targets protecting cholinesterase from inhibition. GSH-S-transferase (GST) activity was significantly increased by CB and AM. Superoxide dismutase activity increased in tadpoles exposed to 6 mg/L AM. Conversely, catalase (CAT) was significantly inhibited by both pesticides. GSH levels, GSH reductase and GSH peroxidase activities were not significantly affected by pesticide exposure. GST increase constitutes an important adaptive response to CB and AM exposure, as this enzyme has been related to pesticide tolerance in amphibian larvae. Besides, the ability to sustain GSH levels in spite of CAT inhibition indicates quite a good antioxidant response. In R. arenarum larvae, CAT and GST activities together with esterases could be used as biomarkers of CB and AM exposure.  相似文献   

7.
Age composition and age-related trends of antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT), peroxidase (PER), glutathione reductase (GR) and glutathione-S-transferase (GST) in the blood of seven Black Sea teleosts (Carangidae, Centracanthidae, Gadidae, Mullidae, Gobiidae and Scorpaenidae) collected in marine coastal area of Sevastopol (Ukraine) were studied. In the catches the animals of 1 – 2 years of age dominated while in the Scorpaena porcus population the number of relatively elder individuals belonging to classes of 3–4 years was the highest. The trends of antioxidant enzyme activities in blood were not uniform. Three types of age-dependent responses were indicated in fish blood: 1. enzymatic activity did not change with age; 2. enzymatic activity decreased with age and 3. enzyme activity increased with age or varied unclearly. The interspecies differences of age-related enzymatic activities associated with the specificity of fish biology and ecology were indicated. Despite no clear evidence of age-related differences between fish species belonging to different ecological groups both benthic forms exhibited similar age-dependent trends of SOD and PER. The correlations between blood antioxidant enzyme activities in fish belonging to suprabenthic and benthic/pelagic groups demonstrated the intermediate values as compared to the benthic and pelagic forms. The results suggest the importance of age trends for biomarkers in fish monitoring studies.  相似文献   

8.
Inhibition of root growth and modification of root morphology are the most sensitive responses of Lupinus luteus cv. Ventus L. to lead ions - Pb(NO3)2. Using electron paramagnetic resonance (EPR), we found that at the lead concentration of 150 mg.L–1, the level of free radicals remained at control level, whereas at the higher, sublethal concentration of 350 mg.L–1, they markedly increased. The EPR signal with the g-value at the maximum absorption of 2.0053 implied that the paramagnetic radical is derived from a quinone. The response of antioxidant enzymes, such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POX, EC 1.11.1.7) and ascorbate peroxidase (APOX, EC 1.11.1.11), to exogenously applied lead ions was also examined. Enzyme activity was estimated as a function of time and concentration. Native polyacrylamide gel electrophoresis followed by specific staining revealed an increase in the activity of SOD, CAT, POX and APOX coinciding with the time of cultivation. A lead-dependent increase in activities of SOD and POX from root tip extracts was observed, whereas CAT and APOX activities decreased at the higher lead concentrations. These results suggest that at higher lead concentrations, the formation of both free radicals and reactive oxygen species is beyond the capacity of the antioxidant system, which in turn may contribute to the reduced root growth.  相似文献   

9.
An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.  相似文献   

10.
The activities of antioxidant defence enzymes — total, manganese and copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) — in the liver of longfin gurnard (Chelidonichthys obscurus) from the Montenegrin coastline (Adriatic sea) were investigated. The specimens were collected in winter (February) and late spring (May) at two localities: Platamuni (PL, potentially unpolluted) and the Estuary of the River Bojana (EB, potentially polluted). The obtained results show that the activities of Mn SOD, CAT, GSH-Px and GST in winter were significantly lower at EB than at PL. In spring, the activities of CAT and GST were decreased, while GR activity was increased at EB in comparison to PL. The activities of Mn SOD and GST at PL were decreased and GSH-Px, GR and GST activities at EB were increased in spring compared to winter. Our work represents the first study of liver antioxidant enzymes of longfin gurnard from the Montenegrin coastline and reveals that locality, as a variable, has a greater influence on antioxidant enzymes and biotransformation phase II enzyme GST activities compared to season.  相似文献   

11.
Arsenic, an important human toxin, is naturally occurring in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of the world, particularly Asia. Epidemiological studies have shown a strong association between chronic arsenic exposure and various adverse health effects, including cardiovascular diseases, neurological defects and cancer of lung, skin, bladder, liver and kidney. The protective role of the fruits of Emblica officinalis (500 mg/kg b.wt.) was studied in adult Swiss albino mice against arsenic induced hepatopathy. Arsenic treated group (NaAsO2, 4 mg/kg b.wt.) had a significant increase in serum transaminases and lipid peroxidation (LPO) content in liver, whereas significant decrease was recorded in hepatic superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and serum alkaline phosphatase activity. Combined treatment of Emblica and arsenic (pre and post) declined the serum transaminases and LPO content in liver whereas significant increase was noticed in SOD, CAT, GST and serum alkaline phosphatase activities. Liver histopathology showed that Emblica fruit extract had reduced karyolysis, karyorrhexis, necrosis and cytoplasmic vacuolization induced by NaAsO2 intoxication. Thus it can be concluded that pre- and post-supplementation of E. officinalis fruit extract significantly reduced arsenic induced oxidative stress in liver.  相似文献   

12.
To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m−2) for 8 h day−1 for 8 days (PAR, 220 µmol m−2 s−1) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm−2; beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.Key words: Isatis indigotica, laser, UV-B lesion  相似文献   

13.
We investigated the effect of long-term exposure to CBZ on the antioxidant system in brain tissue of rainbow trout. Fish were exposed to sublethal concentrations of CBZ (1.0 μg/L, 0.2 mg/L or 2.0 mg/L) for 7, 21, and 42 days. Oxidative stress indices (LPO and CP) and activities of antioxidant enzymes (SOD, CAT, GPx and GR) in fish brain were measured. In addition, non-enzymatic antioxidant (GSH) was determined after 42 days exposure. Carbamazepine exposure at 0.2 mg/L led to significant increases (p < 0.05) of LPO and CP after 42 days and, at 2.0 mg/L, after 21 days. Activities of the antioxidant enzymes SOD, CAT, and GPx in CBZ-treated groups slightly increased during the first period (7 days). However, activities of all measured antioxidant enzymes were significantly inhibited (p < 0.05) at 0.2 mg/L exposure after 42 days and after 21 days at 2.0 mg/L. After 42 days, the content of GSH in fish brain was significantly lower (p < 0.05) in groups exposed to CBZ at 0.2 mg/L and 2.0 mg/L than in other groups. Prolonged exposure to CBZ resulted in excess reactive oxygen species formation, finally resulting in oxidative damage to lipids and proteins and inhibited antioxidant capacities in fish brain. In short, a low level of oxidative stress could induce the adaptive responses of antioxidant enzymes, but long-term exposure to CBZ could lead to serious oxidative damage in fish brain.  相似文献   

14.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

15.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions.  相似文献   

16.
Thermal trauma can damage organs away from the skin burn site and lead to multiple organ dysfunction. Following thermal injury, all tissues are exposed to ischemia, and as a result, resuscitation and reperfusion occur during the burning shock. Burn damage starts systemic inflammatory reactions that produce toxins and reactive oxygen radicals that lead to peroxidation. This study aimed to investigate, for the first time, the possible antioxidant effects of Myrtus communis ethanol extract on burn-induced oxidative distant organ injury orally. The thermal trauma was generated under ether anesthesia by exposing the dorsum of rats to 90 °C water bath for 10 s. 100 mg/kg/day Mrytus communis ethanol extract was applied orally for two days. Malondialdehyde (MDA) and glutathione (GSH) levels, glutatinone-S-transferase (GST), superoxidedismutase (SOD) and catalase (CAT) activities were determined to detect the possible antioxidant effects of myrtle on small intestine and lung tissues. Burn damage significantly increased MDA levels in lung and small intestine tissues, and significantly decreased GSH levels, CAT and GST activities in the small intestine and lung tissues compared to control group. Mrytus communis ethanol extract decreased MDA level and increased GSH level, SOD, CAT and GST activities significantly in either small intestine or lung tissues. Mrytus communis extract may be an ideal candidate to be used as an antioxidant adjunct to improve oxidative distant organ damage to limit the systemic inflammatory response and decreasing the recovery time after thermal injury.  相似文献   

17.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

18.
19.
Hyperhydricity is a physiological abnormality that frequently affects shoots that are vegetatively propagated in vitro. In this study, sugar beet (Beta vulgaris L. cv. Felicita) shoot tip explants were cultured on Murashige and Skoog medium supplemented with different concentrations of polyethylene glycol (PEG) 6000. We observed that higher concentrations of PEG 6000 and longer exposure (up to 4 wk) resulted in increasing levels of hyperhydration as well as browning and/or blackening of tissues in culture. A comparison of hyperhydric shoots with controls on the 28th day showed a marked increase in the content of water, phenolics, and malondialdehyde (MDA), which was positively correlated with an increase in the accumulation of PEG 6000. Selected antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) also increased in hyperhydric shoots, especially at lower concentrations of PEG 6000. Regression analysis indicated that strong linear relationships exist between SOD–APX (R 2?=?0.932), SOD–CAT (R 2?=?0.753), SOD–total phenolic content (R 2?=?0.966), APX–PPO (R 2?=?0.842), APX–total phenolic content (R 2?=?0.904), POX–CAT (R 2?=?0.751), and CAT–total phenolic content (R 2?=?0.806). Despite the correlation between different antioxidant enzymes and between the antioxidant enzymes and antioxidant compounds, was not able to prevent ROS damage in hyperhydric shoots. The negative correlation between SOD–MDA, POX–MDA, CAT–MDA, and MDA–total phenolics also indicated an increase in antioxidant enzyme activities, yet the increase in these antioxidant compound contents did not prevent lipid peroxidation of in vitro propagated beet shoots.  相似文献   

20.
The effect of B toxicity on antioxidant responses of soybean (Glycine max) cv. Athow was investigated by growing plants for 43 days at 0.2 (control), 2 and 12 mg B kg?1. At the end of the treatment period, shoot growth, lipid peroxidation level, the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), and their isoenzymes in leaves were measured. Boron concentration in leaves was significantly increased by the increasing levels of B treatment from 43 to 522 mg kg?1, and shoot dry matter was depressed at 12 mg B kg?1. Significant increases in SOD, CAT, and APX activities were determined in leaves under 12 mg B kg?1; however, GR activities were decreased while POX activity was unchanged. Increased enzymic antioxidant activity arose from a combination of newly formed isoenzymes and activation of existing isoenzymes. By contrast, SOD and GR activities were decreased by 2 mg B kg?1 concentration as compared to the control groups while POX activity was increased and the activity of CAT did not change. Malondialdehyde content increased under 2 mg B kg?1 but decreased under 12 mg B kg?1. These results suggest that higher antioxidant activity observed under 12 than at 2 mg B kg?1 provided higher free radical-scavenging capacity, and thus a lower level of lipid peroxidation in Athow. While the induction of increased antioxidant activity was related to internal boron levels, the signaling and coordination of responses remain unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号