首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Human T-cell leukemia virus type I (HTLV-I) genome is believed to encode its own protease, although the protease has not yet been detected. To identify the HTLV-I protease, an in-frame gag (3' portion)-prt region was expressed in Escherichia coli. The 14-kDa product was detected using antisera against a synthetic peptide mimicking the fragment of HTLV-I protease, although the molecular weight of the primary translational product was 27,000. A cell extract had a proteolytic activity to cleave a synthetic peptide substrate containing the cleavage site of gag p19/p24 at the correct site in vitro. Replacement of the putative active site Asp-64 with Gly abolished both in vivo processing activity and in vitro proteolytic activity. These results suggest that the 14-kDa product is the mature enzymatically active HTLV-I protease generated through posttranslational autoprocessing in E. coli.  相似文献   

2.
Bacillopeptidase F (Bpr) is a fibrinolytic serine protease produced by Bacillus subtilis. Its precursor is composed of a signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE). Several active forms of Bpr have been previously reported, but little is known about the maturation of this enzyme. Here, a gene encoding a Bpr (BprL) was cloned from B. subtilis LZW and expressed in B. subtilis WB700, and three fibrinolytic mature forms with apparent molecular masses of 45, 75, and 85 kDa were identified in the culture supernatant. After treatment with urea, the 75-kDa mature form had the same molecular mass as the 85-kDa mature form, from which we infer that they adopt different conformations. Mutational analysis revealed that while the 85-kDa mature form is generated via heterocatalytic processing of a BprL proform by an unidentified protease of B. subtilis, the production of the 75- and 45-kDa mature forms involves both hetero- and autocatalytic events. From in vitro analysis of BprL and its sequential C-terminal truncation variants, it appears that partial removal of the CTE is required for the initiation of autoprocessing of the N-terminal propeptide, which is composed of a core domain (N*) and a 15-residue linker peptide, thereby yielding the 45-kDa mature form. These data suggest that the differential processing of BprL, either heterocatalytically or autocatalytically, leads to the formation of multiple mature forms with different molecular masses or conformations.  相似文献   

3.
Pager CT  Dutch RE 《Journal of virology》2005,79(20):12714-12720
Proteolytic processing of paramyxovirus fusion (F) proteins is essential for the generation of a mature and fusogenic form of the F protein. Although many paramyxovirus F proteins are proteolytically processed by the cellular protease furin at a multibasic cleavage motif, cleavage of the newly emerged Hendra virus F protein occurs by a previously unidentified cellular protease following a single lysine at residue 109. We demonstrate here that the cellular protease cathepsin L is involved in converting the Hendra virus precursor F protein (F(0)) to the active F(1) + F(2) disulfide-linked heterodimer. To initially identify the class of protease involved in Hendra virus F protein cleavage, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F (known to be proteolytically processed by furin) were metabolically labeled and chased in the absence or presence of serine, cysteine, aspartyl, and metalloprotease inhibitors. Nonspecific and specific protease inhibitors known to decrease cathepsin activity inhibited proteolytic processing of Hendra virus F but had no effect on simian virus 5 F processing. We next designed shRNA oligonucleotides to cathepsin L which dramatically reduced cathepsin L protein expression and enzyme activity. Cathepsin L shRNA-expressing Vero cells transfected with pCAGGS-Hendra F demonstrated a nondetectable amount of cleavage of the Hendra virus F protein and significantly decreased membrane fusion activity. Additionally, we found that purified human cathepsin L processed immunopurified Hendra virus F(0) into F(1) and F(2) fragments. These studies introduce a novel mechanism for primary proteolytic processing of viral glycoproteins and also suggest a previously unreported biological role for cathepsin L.  相似文献   

4.
The recognition of lysine-type peptidoglycans (PG) by the PG recognition complex has been suggested to cause activation of the serine protease cascade leading to the processing of Sp?tzle and subsequent activation of the Toll signaling pathway. So far, two serine proteases involved in the lysine-type PG Toll signaling pathway have been identified. One is a modular serine protease functioning as an initial enzyme to be recruited into the lysine-type PG recognition complex. The other is the Drosophila Sp?tzle processing enzyme (SPE), a terminal enzyme that converts Sp?tzle pro-protein to its processed form capable of binding to the Toll receptor. However, it remains unclear how the initial PG recognition signal is transferred to Sp?tzle resulting in Toll pathway activation. Also, the biochemical characteristics and mechanism of action of a serine protease linking the modular serine protease and SPE have not been investigated. Here, we purified and cloned a novel upstream serine protease of SPE that we named SAE, SPE-activating enzyme, from the hemolymph of a large beetle, Tenebrio molitor larvae. This enzyme was activated by Tenebrio modular serine protease and in turn activated the Tenebrio SPE. The biochemical ordered functions of these three serine proteases were determined in vitro, suggesting that the activation of a three-step proteolytic cascade is necessary and sufficient for lysine-type PG recognition signaling. The processed Sp?tzle by this cascade induced antibacterial activity in vivo. These results demonstrate that the three-step proteolytic cascade linking the PG recognition complex and Sp?tzle processing is essential for the PG-dependent Toll signaling pathway.  相似文献   

5.
Gray K  Ellis V 《FEBS letters》2008,582(6):907-910
Brain-derived neurotrophic factor (BDNF) is secreted as either a mature furin-processed form or an unprocessed pro-form. Here, we characterise the extracellular processing of pro-BDNF by the serine protease plasmin. Using recombinant BDNF, maintained in the pro-form by site-directed mutagenesis or inhibition of furin, we demonstrate that plasmin (but not related proteases) is a specific and efficient activator of pro-BDNF. The proteolytic cleavage site is identified as Arg125-Val, within the consensus furin-cleavage motif (RVRR), generating an active form that stimulated neurite outgrowth on TrkB-transfected PC12 cells. Furthermore, we demonstrate that this processing can also occur in the pericellular environment by the action of cell-associated plasminogen activators.  相似文献   

6.
The precursor of aqualysin I, an extracellular subtilisin-type protease produced by Thermus aquaticus, consists of four domains: an N-terminal signal peptide, an N-terminal pro-sequence, a protease domain, and a C-terminal extended sequence. In an Escherichia coli expression system for the aqualysin I gene, a 38 kDa precursor protein consisting of the protease domain and the C-terminal extended sequence is accumulated in the membrane fraction and processed to a 28 kDa mature enzyme upon heat treatment at 65°C. The 38 kDa precursor protein is separated as a soluble form from denatured E. coli proteins after heat treatment. Accordingly, purification of the 38 kDa proaqualysin I was performed using chromatography. The purified precursor protein gave a single band on SDS-polyacrylamide gels. The precursor protein exhibited proteolytic activity comparable to that of the mature enzyme. The purified precursor protein was processed to the mature enzyme upon heat treatment. The processing was inhibited by diisopropyl fluorophosphate. The processing rate increased upon either the addition of mature aqualysin I or upon an increase in the concentration of the precursor, suggesting that the cleavage of the C-terminal extended sequence occurs through an intermolecular self-processing mechanism.  相似文献   

7.
G A Rufo  Jr  B J Sullivan  A Sloma    J Pero 《Journal of bacteriology》1990,172(2):1019-1023
We have isolated and characterized two minor extracellular proteases from culture supernatants of a strain of Bacillus subtilis containing deletion mutations of the genes for the extracellular proteases subtilisin (apr) and neutral protease (npr) and a minor extracellular protease (epr) as well as intracellular serine protease-I (isp-1). Characterization studies have revealed that one of these enzymes is the previously described protease bacillopeptidase F. The second enzyme, the subject of this report, is a novel metalloprotease, which we designate Mpr. Mpr is a unique metalloprotease that has been purified to apparent homogeneity by using both conventional and high-performance liquid chromatography procedures. Mpr has a molecular mass of approximately 28 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a basic isoelectric point of 8.7. The enzyme showed maximal activity against azocoll at pH 7.5 and 50 degrees C. Mpr was inhibited by dithiothreitol and a combination of beta-mercaptoethanol and EDTA. Activity was moderately inhibited by beta-mercaptoethanol and EDTA alone as well as by cysteine and citrate and only marginally by phosphoramidon 1,10-phenanthroline and N-[N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-agmatine. Mpr was not inhibited by phenylmethylsulfonyl fluoride. In addition, Mpr showed esterolytic but not collagenolytic activities. Our studies suggest that Mpr is a secreted metalloprotease containing cysteine residues that are required for maximal activity.  相似文献   

8.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains.  相似文献   

9.
Dichelobacter nodosus is the principal causative agent of ovine footrot and its extracellular proteases are major virulence factors. Virulent isolates of D. nodosus secrete three subtilisin-like serine proteases: AprV2, AprV5 and BprV. These enzymes are each synthesized as precursor molecules that include a signal (pre-) peptide, a pro-peptide and a C-terminal extension, which are processed to produce the mature active forms. The function of the C-terminal regions of these proteases and the mechanism of protease processing and secretion are unknown. AprV5 contributes to most of the protease activity secreted by D. nodosus. To understand the role of the C-terminal extension of AprV5, we constructed a series of C-terminal-deletion mutants in D. nodosus by allelic exchange. The proteases present in the resultant mutants and their complemented derivatives were examined by protease zymogram analysis, western blotting and mass spectrometry. The results showed that the C-terminal region of AprV5 is required for the normal expression of protease activity, deletion of this region led to a delay in the processing of these enzymes. D. nodosus is an unusual bacterium in that it produces three closely related extracellular serine proteases. We have now shown that one of these enzymes, AprV5, is responsible for its own maturation, and for the optimal cleavage of AprV2 and BprV, to their mature active forms. These studies have increased our understanding of how this important pathogen processes these virulence-associated extracellular proteases and secretes them into its external environment.  相似文献   

10.
Protease IV is a lysine-specific endoprotease produced by Pseudomonas aeruginosa whose activity has been correlated with corneal virulence. Comparison of the protease IV amino acid sequence to other bacterial proteases suggested that amino acids His-72, Asp-122, and Ser-198 could form a catalytic triad that is critical for protease IV activity. To test this possibility, site-directed mutations by alanine substitution were introduced into six selected residues including the predicted triad and identical residues located close to the triad. Mutations at any of the amino acids of the predicted catalytic triad or Ser-197 caused a loss of enzymatic activity and absence of the mature form of protease IV. In contrast, mutations at His-116 or Ser-200 resulted in normal processing into the enzymatically active mature form. A purified proenzyme that accumulated in the His-72 mutant was shown in vitro to be susceptible to cleavage by protease IV purified from P. aeruginosa. Furthermore, similarities of protease IV to the lysine-specific endoprotease of Achromobacter lyticus suggested three possible disulfide bonds in protease IV. These results identify the catalytic triad of protease IV, demonstrate that autodigestion is essential for the processing of protease IV into a mature protease, and predict sites essential to enzyme conformation.  相似文献   

11.
Interleukin-1 beta (IL-1 beta) is derived from an inactive precursor by proteolytic cleavage. To study IL-1 beta processing, we expressed the precursor in Escherichia coli, partially purified it, and used it as a substrate for various potentially relevant protease preparations. The precursor alone was virtually inactive, but incubation with membranes from human monocytes or myeloid cell lines yielded a 500-fold increase in IL-1 bioactivity. Western blot analysis of the incubated material showed that the 31,000-Da precursor is broken down to three major products, ranging from 17,400 to about 19,000 Da. The most active of these products is the smallest one, and it co-migrates during electrophoresis with mature IL-1 beta. Four purified known proteases were also tested for their effect on precursor IL-1 beta, and none of these products co-migrated with the mature protein. Chymotrypsin and Staphylococcus aureus protease yielded slightly larger products, which were highly active. Elastase and trypsin yielded substantially larger products, and these had little IL-1 activity. The products of three of the known proteases were identified by NH2-terminal sequencing. These results show conclusively that proteolysis of precursor IL-1 beta generates biological activity and that the cleavage must occur close to the mature NH2 terminus.  相似文献   

12.
Plasmodium food vacuole plasmepsins are activated by falcipains   总被引:2,自引:0,他引:2  
Intraerythrocytic malaria parasites use host hemoglobin as a major nutrient source. Aspartic proteases (plasmepsins) and cysteine proteases (falcipains) function in the early steps of the hemoglobin degradation pathway. There is extensive functional redundancy within and between these protease families. Plasmepsins are synthesized as integral membrane proenzymes that are activated by cleavage from the membrane. This cleavage is mediated by a maturase activity whose identity has been elusive. We have used a combination of cell biology, chemical biology, and enzymology approaches to analyze this processing event. These studies reveal that plasmepsin processing occurs primarily via the falcipains; however, if falcipain activity is blocked, autoprocessing can take place, serving as an alternate activation system. These results establish a further level of redundancy between the protease families involved in Plasmodium hemoglobin degradation.  相似文献   

13.
Proteolytic processing of epithelial sodium channel (ENaC) subunits occurs as channels mature within the biosynthetic pathway. The proteolytic processing events of the alpha and gamma subunits are associated with channel activation. Furin cleaves the alpha subunit ectodomain at two sites, releasing an inhibitory tract and activating the channel. However, furin cleaves the gamma subunit ectodomain only once. A second distal cleavage in the gamma subunit induced by other proteases, such as prostasin and elastase, is required to release a second inhibitory tract and further activate the channel. We found that the serine protease plasmin activates ENaC in association with inducing cleavage of the gamma subunit at gammaLys194, a site distal to the furin site. A gammaK194A mutant prevented both plasmin-dependent activation of ENaC and plasmin-dependent production of a unique 70-kDa carboxyl-terminal gamma subunit cleavage fragment. Plasmin-dependent cleavage and activation of ENaC may have a role in extracellular volume expansion in human disorders associated with proteinuria, as filtered plasminogen may be processed by urokinase, released from renal tubular epithelium, to generate active plasmin.  相似文献   

14.
The extracellular serine endopeptidase GluSE (EC 3.4.21.19) is considered to be one of the virulence factors of Staphylococcus epidermidis. The present study investigated maturation processing of native GluSE and that heterologously expressed in Escherichia coli. In addition to the 28-kDa mature protease, small amounts of proenzymes with molecular masses of 32, 30, and 29 kDa were identified in the extracellular and cell wall-associated fractions. We defined the pre (M1-A27)- and pro (K28-S66)-segments, and found that processing at the E32-S33 and D48-I49 bonds was responsible for production of the 30- and 29-kDa intermediates, respectively. The full-length form of C-terminally His-tagged GluSE was purified as three proenzymes equivalent to the native ones. These molecules possessing an entire or a part of the pro-segment were proteolytically latent and converted to a mature 28-kDa form by thermolysin cleavage at the S66-V67 bond. Mutation of the essential amino acid S235 suggested auto-proteolytic production of the 30- and 29-kDa intermediates. Furthermore, an undecapeptide (I56-S66) of the truncated pro-segment not only functions as an inhibitor of the protease but also facilitates thermolysin processing. These findings could offer clues to the molecular mechanism involved in the regulation of proteolytic activity of pathogenic proteases secreted from S. epidermidis.  相似文献   

15.
Spumaviruses, or foamy viruses, express Gag proteins that are incompletely processed by the viral protease in cell cultures. To delineate the proteolytic cleavage sites between potential Gag subdomains, recombinant human spumaretrovirus (HSRV) Gag proteins of different lengths were expressed, purified by affinity chromatography, and subjected to HSRV protease assays. HSRV-specific proteolytic cleavage products were isolated and characterized by Western blotting. Peptides spanning potential cleavage sites, as deduced from the sizes of the proteolytic cleavage products, were chemically synthesized and assayed with HSRV protease. The cleaved peptides were then subjected to mass spectrometry. In control experiments, HSRV protease-deficient mutant proteins were used to rule out unspecific processing by nonviral proteases. The cleavage site junctions identified and the calculated sizes of the cleavage products were in agreement with those of the authentic cleavage products of the HSRV Gag proteins detectable in viral proteins from purified HSRV particles and in virus-infected cells. The biological significance of the data was confirmed by mutational analysis of the cleavage sites in a recombinant Gag protein and in the context of the infectious HSRV DNA provirus.  相似文献   

16.
Nitric oxide (NO) regulates a number of signaling functions in both animals and plants under several physiological and pathophysiological conditions. S-Nitrosylation linking a nitrosothiol on cysteine residues mediates NO signaling functions of a broad spectrum of mammalian proteins, including caspases, the main effectors of apoptosis. Metacaspases are suggested to be the ancestors of metazoan caspases, and plant metacaspases have previously been shown to be genuine cysteine proteases that autoprocess in a manner similar to that of caspases. We show that S-nitrosylation plays a central role in the regulation of the proteolytic activity of Arabidopsis thaliana metacaspase 9 (AtMC9) and hypothesize that this S-nitrosylation affects the cellular processes in which metacaspases are involved. We found that AtMC9 zymogens are S-nitrosylated at their active site cysteines in vivo and that this posttranslational modification suppresses both AtMC9 autoprocessing and proteolytic activity. However, the mature processed form is not prone to NO inhibition due to the presence of a second S-nitrosylation-insensitive cysteine that can replace the S-nitrosylated cysteine residue within the catalytic center of the processed AtMC9. This cysteine is absent in caspases and paracaspases but is conserved in all reported metacaspases.  相似文献   

17.
Cathelicidins are a gene family of antimicrobial peptides produced as inactive precursors. Signal peptidase removes the N-terminal signal sequence, while peptidylglycine alpha-amidating monooxygenase often amidates and cleaves the C-terminal region. Removal of the cathelin domain liberates the active antimicrobial peptide. For mammalian sequences, this cleavage usually occurs through the action of elastase, but other tissue-specific processing enzymes may also operate. Once released, these bioactive peptides are susceptible to proteolytic degradation. We propose that some mature cathelicidins are naturally resistant to proteases due to their unusual primary structures. Among mammalian cathelicidins, proline-rich sequences should resist attack by serine proteases because proline prevents cleavage of the scissile bond. In hagfish cathelicidins, the unusual amino acid bromotryptophan may make the active peptides less susceptible to proteolysis for steric reasons. Such protease resistance could extend the pharmacokinetic lifetimes of cathelicidins in vivo, sustaining antimicrobial activity.  相似文献   

18.
Corin is a cardiac transmembrane serine protease. In cell-based studies, corin converted pro-atrial natriuretic peptide (pro-ANP) to mature ANP, suggesting that corin is potentially the pro-ANP convertase. In this study, we evaluated the importance of the transmembrane domain and activation cleavage in human corin. We showed that a soluble corin that consists of only the extracellular domain was capable of processing recombinant human pro-ANP in cell-based assays. In contrast, a mutation at the conserved activation cleavage site, R801A, abolished the function of corin, demonstrating that the activation cleavage is essential for corin activity. These results allowed us to design, express, and purify a mutant soluble corin, EKsolCorin, that contains an enterokinase recognition sequence at the activation cleavage site. Purified EKsolCorin was activated by enterokinase in a dose-dependent manner. Activated EK-solCorin had hydrolytic activity toward peptide substrates with a preference for Arg and Lys residues in the P-1 position. This activity of EKsolCorin was inhibited by trypsin-like serine protease inhibitors but not inhibitors of chymotrypsin-like, cysteine-, or metallo-proteases. In pro-ANP processing assays, purified active EKsolCorin converted recombinant human pro-ANP to biologically active ANP in a highly sequence-specific manner. The pro-ANP processing activity of EKsolCorin was not inhibited by human plasma. Together, our data indicate that the transmembrane domain is not necessary for the biological activity of corin but may be a mechanism to localize corin at specific sites, whereas the proteolytic cleavage at the activation site is an essential step in controlling the activity of corin.  相似文献   

19.
Herzog C  Kaushal GP  Haun RS 《Cytokine》2005,31(5):394-403
Interleukin-1beta (IL-1beta) is a proinflammatory cytokine that is synthesized as an inactive precursor molecule that must be proteolytically processed to generate the biologically active form. Maturation of the precursor is primarily performed by caspase-1, an intracellular cysteine protease; however, processing by other proteases has been described. Meprins are cell surface and secreted metalloproteases expressed by renal and intestinal brush-border membranes, leukocytes, and cancer cells. In this study we show that purified recombinant meprin B can process the interleukin-1beta precursor to a biologically active form. Amino-terminal sequencing and mass spectrometry analysis of the product of digestion by activated meprin B determined that proteolytic cleavage resulted in an additional six amino acids relative to the site utilized by caspase-1. The biological activity of the meprin B-cleaved cytokine was confirmed by measuring the proliferative response of helper T-cells. These results suggest that meprin may play an important role in activation of this proinflammatory cytokine in various pathophysiological conditions.  相似文献   

20.
To analyze the processing of extracellular enzymes of Bacillus subtilis, an NH2-terminally extended hybrid alpha-amylase [pTUBE638-alpha-amylase (E24)] was purified from the periplasm of E. coli(pTUBE638) as the substrate for the in vitro processing reaction, in which a 21-amino-acid extra-peptide was added at the NH2-terminus of the mature thermostable alpha-amylase. The extended peptide in pTUBE638-alpha-amylase (E24) was completely processed by the extracellular alkaline protease of B. subtilis alone at pH 7.5 to 10.0. The processing was inhibited by 2 mM PMSF. In contrast, the neutral protease did not process the extended peptide. The processing activity of the purified alkaline protease was fully active in 100 mM phosphate and glycine-NaCl-NaOH buffer while it was partially active in 100 mM Tris-HCl or MOPS buffer. The optimum pH of the activity ranged from 8.0 to 9.0, although the optimum pH of the alkaline protease activity toward casein and Azocoll was 10.5. The NH2-terminal amino acid sequences of the enzymes processed in vitro coincided with those of the mature extracellular thermostable alpha-amylases in the culture medium of B. subtilis (pTUBE638). The appearance of the processing activity of alkaline protease was correlated with the changes of the pH in the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号