首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
Activation and inhibition of Ca2+-ATPase of calmodulin-depleted human erythrocyte membranes by oleic acid and a variety of other fatty acids have been measured. Low concentrations of oleic acid stimulate the enzyme activity, both in the presence and in the absence of calmodulin. Concomitantly, the affinity of the membrane bound enzyme to calmodulin progressively decreases due to competitive interactions of calmodulin and oleic acid with the enzyme. Removal of oleic acid from the membrane by serum albumin extinguishes the activating effect of oleic acid and restores the ability of the enzyme to bind calmodulin with high affinity. High concentrations of oleic acid induce an almost complete and irreversible loss of enzyme activity which cannot be abolished by removal of oleic acid. Despite a complete loss of enzyme activity, binding of calmodulin to membranes is approximately normal after removal of oleic acid. Activities of (Na+ + K+)-ATPase, Mg2+-ATPase and acetylcholine esterase, as well as the total protein content, show no gross changes upon treatment of membranes with increasing amounts of oleic acid, which seems to exclude that membrane solubilisation by oleic acid causes an inactivation of the enzyme.  相似文献   

2.
The effects of various lipids on calmodulin interaction with Ca-dependent phosphodiesterase were investigated. Palmitic, myristic and stearic acids increased the enzyme activity; the degree of the enzyme activation by calmodulin was decreased thereby. Oleic acid produced a weak activating effect on phosphodiesterase but completely blocked calmodulin action. The effects of the fatty acids under study were reversible, the activation constant was equal to 10(-4)-5 X 10(-4) M. In the presence of Ca2+ phosphoinositides and fatty acids changed the fluorescence intensity of dansyl-labelled calmodulin; in the absence of Ca2+ the lipids did not affect protein fluorescence. The lipids had no influence on the protein affinity for Ca2+. During chromatography of phosphodiesterase on calmodulin-Sepharose the enzyme was eluted from the column both in the presence of EGTA and palmitic acid. It was concluded that fatty acids prevent the formation of the calmodulin - phosphodiesterase complex. This effects may both be due to the lipid binding to the enzyme and to calmodulin.  相似文献   

3.
The in vitro stimulation of human and rabbit erythrocyte membrane Ca2+-ATPase activity by physiological concentrations of thyroid hormone has recently been described. To extend these observations to a nucleated cell model, Ca2+-ATPase activity in a membrane preparation obtained from rabbit myocardium has been studied. Activity of 5'-nucleotidase in the preparation was increased 26-fold over that of myocardial homogenate, consistent with enrichment by sarcolemma. Mean basal enzyme activity in membranes from nine animals was 20.8 +/- 3.3 mumol Pi mg membrane protein-1 90 min-1, approximately 20-fold the activity described in rabbit red cell membranes. Exposure of heart membranes in vitro to L-thyroxine (T4) (10(-10)M) increased Ca2+-ATPase activity to 29.2 +/- 3.8 mumol Pi (P less than 0.001). Dose-response studies conducted with T4 showed that maximal stimulatory response was obtained at 10(-10) M). Hormonal stimulation was comparable for L-T4 and triiodo-L-thyronine (T3) (10(-10) M). Tetraiodothyroacetic acid was without biological activity, whereas triiodothyroacetic acid and D-T4, each at 10(-10) M, significantly decreased enzyme activity compared to control (basal) levels. The action of L-T4 on myocardial membrane Ca2+-ATPase activity was inhibited by trifluoperazine (100 microM) and the naphthalenesulfonamide W-7 (50-100 microM), compounds that block actions of calmodulin, the protein activator of membrane-associated Ca2+-ATPase. Radioimmunoassay revealed the presence of calmodulin (1.4 micrograms/mg membrane protein-1) in the myocardial membrane fraction and 0.35 micrograms/mg-1 in cytosol. Myocardial Ca2+-ATPase activity, apparently of sarcolemmal origin, is thus thyroid hormone stimulable. The hormonal responsiveness of this calcium pump-associated enzyme requires calmodulin.  相似文献   

4.
Y H Xu  J Liu  S P Zhang    L H Liu 《The Biochemical journal》1987,248(3):985-988
Ca2+-stimulated Mg2+-dependent ATPase (Ca2+ + Mg2+-ATPase) stimulated by calmodulin, by partial proteolysis or by oleic acid in erythrocyte membranes was inhibited by various derivatives of the naturally occurring alkaloid berbamine. The ability of these derivatives to inhibit trypsin-activated Ca2+ + Mg2+-ATPase correlated well with their ability to inhibit the calmodulin-stimulated enzyme. Inhibition of the trypsin-activated Ca2+ + Mg2+-ATPase by O-4-(ethoxybutyl)berbamine (EBB) was competitive with respect to ATP. The Ki for inhibition was about 8 microM. These results suggest that the binding site of EBB on the activated Ca2+ + Mg2+-ATPase may bear structural similarity to that on calmodulin, and may be closely related to the ATP-binding site on the enzyme.  相似文献   

5.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 microM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 microM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z greater than Ca4Z greater than Ca2Z greater than or equal to CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10(-7)-10(-6) M Ca2+, even at a calmodulin concentration of 5 microM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 microM, corresponding to 50-80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/h membrane protein. We therefore conclude that most of the calmodulin is dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10(-7)-10(-8) M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10(-6)-10(-5) M.  相似文献   

6.
Short incubation of erythrocyte membranes with oleic acid releases Ca2+-independently bound endogenous calmodulin together with a minor fraction of membrane-associated proteins without destruction of the membranes. The released endogenous calmodulin is similar if not identical to cytosolic calmodulin reversibly bound to ghosts in a Ca2+-dependent manner. The release of endogenous calmodulin proceeds without affecting the activity of Ca2+-ATPase when ghosts are incubated with oleic acid in the presence of Ca2+ plus ATP and thereafter freed from oleic acid by washings with serum albumin. Kinetic parameters of Ca2+-ATPase of ghosts with and without endogenous calmodulin are identical as are amounts of exogenous calmodulin bound to these ghosts. Thus, endogenous calmodulin does not function as an essential part of Ca2+-ATPase.  相似文献   

7.
Five Lactobacillus strains (2 L. gasseri, 2 L. plantarum and 1 L. reuteri) were cultured in modified MRS medium containing fatty acids (FAs) instead of Tween 80 for 24 h at 37 degrees C, to learn the effect of saturated and unsaturated FAs on the Lactobacillus growth. Free FAs included palmitic (16:0), palmitoleic (c9-16:1), stearic (18:0), oleic (c9-18:1), elaidic (t9-18:1), cis-vaccenic (c11-18:1), vaccenic (t11-18:1), linoleic (c9, c12-18:2), conjugated linoleic (c9, t11- and t10, c12-18:2), alpha-linolenic (c9, c12, c15-18:3), alpha-eleostearic (c9, t11, t13-18:3), eicosapentaenoic (20:5), and docosahexaenoic (22:6) acids. Among free FAs, oleic acid stimulated the growth of all Lactobacillus strains, whereas palmitoleic acid had almost no affect on the Lactobacillus growth. Saturated FAs such as stearic and palmitic acids inhibited or did not affect the Lactobacillus growth. Polyunsaturated FAs such as alpha-linolenic, eicosapentaenoic and docosahexaenoic acids strongly inhibited the Lactobacillus growth at 7.6 x 10(-4) m. Octadecenoic acids such as oleic, elaidic, cis-vaccenic and vaccenic acids remarkably promoted the growth of L. gasseri, regardless of the different double bond positions and configurations. When oleic or cis-vaccenic acid was incubated with L. gasseri, the FAs was transformed to cyclopropane FAs (methyleneoctadecanoic acids) after incorporation into the cells. On the other hand, trans FAs such as elaidic and vaccenic acids incorporated into the cells were not converted to another FAs. Conjugated linoleic and alpha-eleostearic acids having a trans double bond promoted the Lactobacillus growth. The growth of L. gasseri was also stimulated by trans-rich free FAs from hydrogenated canola and fish oils. These results showed that octadecenoic acid and trans FAs had strong promotion activities for the Lactobacillus growth due to their incorporation into membrane lipids.  相似文献   

8.
Protein kinase C has been shown to be a phospholipid/Ca2+-dependent enzyme activated by diacylglycerol (Nishizuka, Y. (1984) Nature 308, 693-697; Nishizuka, Y. (1984) Science 225, 1365-1370). We have reported that unsaturated fatty acids (oleic acid and arachidonic acid) can activate protein kinase C independently of Ca2+ and phospholipid (Murakami, K., and Routtenberg, A. (1985) FEBS Lett. 192, 189-193). This study shows that other cis-fatty acids such as linoleic acid also fully activate protein kinase C in the same manner. None of the saturated fatty acids (C:4 to C:18) nor the detergents (sodium dodecyl sulfate and Triton X-100) tested here were as effective as oleic acid. Unlike oleic acid, these detergents strongly inhibited protein kinase C activity induced by Ca2+/phosphatidylserine (PS) and diacylglycerol. Lowering the critical micelle concentration of oleic acid by increasing ionic strength also strongly inhibited oleic acid activation of protein kinase C activity. Dioleoylphosphatidylserine activated protein kinase C effectively (Ka = 7.2 microM). On the other hand, dimyristoylphosphatidylserine, which contains saturated fatty acids at both acyl positions, failed to activate protein kinase C even in the presence of Ca2+. These observations suggest that: protein kinase C activation by free fatty acid is specific to the cis-form and is not due to their detergent-like action, cis-fatty acid activation is due to the direct interaction of protein kinase C with the monomeric form of cis-fatty acids and not with the micelles of fatty acids, and cis-fatty acids at acyl positions in PS are also important for Ca2+/PS activation of protein kinase C.  相似文献   

9.
Thyroid hormone (10(-11) to 10(-10) M) stimulates plasma membrane Ca2+-ATPase activity in vitro in various tissues, including the human red cell (RBC), by a calmodulin-requiring mechanism. Bepridil and cetiedil are Ca2+ antagonists with an intracellular (calmodulin-antagonist) site of action, as well as an effect on the calcium channel in excitable tissues. We have studied the actions of bepridil and cetiedil on Ca2+-ATPase in a channel-free membrane (RBC) to determine effectiveness of these agents as inhibitors of thyroid hormone action on the enzyme. Dose-response studies showed that thyroid hormone stimulation of Ca2+-ATPase activity in vitro was significantly inhibited by as little as 2 x 10(-5) M bepridil and cetiedil. IC50 values of bepridil and cetiedil for thyroid hormone response of the enzyme were 5 x 10(-5) and 2 x 10(-5) M, respectively, whereas IC50s of these agents for enzyme activity in the absence of thyroid hormone were both 10(-4) M. Progressive addition of purified rat testis calmodulin in vitro (10-150 ng calmodulin/mg membrane protein) restored hormone responsiveness in the presence of bepridil and cetiedil. Binding of labeled thyroid hormone by RBC membranes was unaffected by bepridil and cetiedil (up to 2 x 10(-4) M). Thus, bepridil and cetiedil are Ca2+ antagonists that reversibly inhibit thyroid hormone action on human RBC Ca2+-ATPase by a calmodulin-dependent mechanism. Thyroid hormone effect on Ca2+-ATPase is more susceptible to bepridil and cetiedil inhibition than is basal enzyme activity.  相似文献   

10.
The role of regucalcin, which is a regulatory protein in intracellular signaling, in the regulation of Ca(2+)-ATPase activity in the mitochondria of brain tissues was investigated. The addition of regucalcin (10(-10) to 10(-8) M), which is a physiologic concentration in rat brain tissues, into the enzyme reaction mixture containing 25 microM calcium chloride caused a significant increase in Ca(2+)-ATPase activity, while it did not significantly change in Mg(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing mitochondrial Ca(2+)-ATPase activity was completely inhibited in the presence of ruthenium red (10(-7) M) or lanthanum chloride (10(-7) M), both of which are inhibitors of mitochondrial uniporter activity. Whether the effect of regucalcin is modulated in the presence of calmodulin or dibutyryl cyclic AMP (DcAMP) was examined. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not significantly enhanced in the presence of calmodulin (2.5 microg/ml) which significantly increased the enzyme activity. DcAMP (10(-6) to 10(-4) M) did not have a significant effect on Ca(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not seen in the presence of DcAMP (10(-4) M). Regucalcin levels were significantly increased in the brain tissues or the mitochondria obtained from regucalcin transgenic (RC TG) rats. The mitochondrial Ca(2+)-ATPase activity was significantly increased in RC TG rats as compared with that of wild-type rats. This study demonstrates that regucalcin has a role in the regulation of Ca(2+)-ATPase activity in the brain mitochondria of rats.  相似文献   

11.
The effect of phospholipids on Triton X-100 solubilized (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes has been examined. The enzyme activity was increased by phosphatidylinositol, phosphatidylserine, and phosphatidic acid at both low (2 micrometer) and high (65 micrometer) free Ca2+ concentrations, while phosphatidylcholine had little effect and phosphatidylethanolamine and cardiolipin inhibited the (Ca2+ + Mg2+)-ATPase activity at all Ca2+ concentrations studied. The diacylglycerol, diolein, inhibited the enzyme at high, but not low, Ca2+ concentrations. Low concentrations of phospholipase A2 (1-2 international units) also activated the solubilized enzyme, at least in part by releasing free fatty acids, as the activation was mimicked by oleic acid (1-2 mumol/mg protein) and was abolished by fatty acid depleted bovine serum albumin. The combined activation by saturating levels of phosphatidylserine and calmodulin was additive at 6.5 mM MgCl2, and probably occurred at distinct sites on a regulatory component of the enzyme. The activation by both effectors was antagonized by MgCl2 at similar concentrations. Analysis of various models suggested that phosphatidylserine had two effects on (Ca2+ + Mg2+)-ATPase activity. First, a low Ca2+ affinity form of the enzyme was converted to a high Ca2+ affinity form, which was more sensitive to Ca2+ inhibition. Second, it increased the turnover of the enzyme, probably by enhancing its dephosphorylation, which was mimicked in this study by the Ca2+-dependent p-nitrophenylphosphatase partial reaction.  相似文献   

12.
A previous study showed that oleic acid was converted by mixed ruminal microbes to stearic acid and also converted to a multitude of trans octadecenoic acid isomers. This study traced the metabolism of one of these trans C18:1 isomers upon its incubation with mixed ruminal microbes. Unlabeled and labeled (18-[13C]trans-9 C18:1) elaidic acid were each added to four in vitro batch cultures with three cultures inoculated with mixed ruminal bacteria and one uninoculated culture. Samples were taken at 0, 12, 24, and 48 h and analyzed for 13C enrichment in component fatty acids by gas chromatography-mass spectrometry. At 0 h of incubation, enrichment was detected only in elaidic acid. By 48 h of incubation, 13C enrichment was 18% (P < 0.01) for stearic acid, 7% to 30% (P < 0.01) for all trans C18:1 isomers having double bonds between carbons six through 16, and 5% to 10% for cis-9 and cis-11 monoenes. After 48 h, 13C enrichment in the uninoculated cultures was only detected in the added elaidic acid. This study shows trans fatty acids exposed to active ruminal cultures are converted to stearic acid but also undergo enzymic isomerization yielding a multitude of positional and geometric isomers.  相似文献   

13.
14.
A Ca2(+)-ATPase with a high affinity for free Ca2+ (apparent Km of 0.13 microM) was found and characterized in membrane fractions from porcine aortic and coronary artery smooth muscles in comparison with the plasma membrane Ca2(+)-pump ATPase purified from porcine aorta by calmodulin affinity chromatography. The activity of the high-affinity Ca2(+)-ATPase became enriched in a plasma membrane-enriched fraction, suggesting its localization in the plasma membrane. The enzyme was fully active in the absence of exogenously added Mg2+, but required a minute amount of Mg2+ for its activity as evidenced by the findings that it was fully active in the presence of 0.1 microM free Mg2+ but lost the activity in a reaction mixture containing trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid as a divalent cation chelator which has, unlike EGTA, high affinities for both Ca2+ and Mg2+. It was able to utilize a variety of nucleoside di- and triphosphates as substrates, such as ADP, GDP, ATP, GTP, CTP, and UTP, showing a broad substrate specificity. The activity of the enzyme was not modified by calmodulin (5, 10 micrograms/ml). Trifluoperazine, a calmodulin antagonist, had a partial inhibitory effect on the activity at 30 to 240 microM, but this inhibition could not be reproduced by a more specific calmodulin antagonist, W-7, indicating that this inhibition by trifluoperazine was not specific. Furthermore, the high-affinity Ca2(+)-ATPase activity was not modified either by low concentrations (0.5-9 microM) of vanadate or by 1-100 microM p-chloromercuribenzoic acid. Cyclic GMP, nitroglycerin, and nicorandil did not have any effect on the enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The octaethyleneglycol mono-n-dodecyl ether solubilized Ca2+-ATPase purified from human erythrocytes has been studied to determine the physical mechanism of its activation by calmodulin. The dependence of Ca2+-ATPase activity on the enzyme concentration shows a transformation from a calmodulin-dependent to a fully active calmodulin-independent form. The transformation is cooperative with a half-maximal activation at 10-20 nM enzyme. This suggests that at higher enzyme concentrations interactions between Ca2+-ATPase polypeptide chains substitute for calmodulin-enzyme interactions, resulting in activation. In support of this interpretation, the inclusion of higher octaethyleneglycol mono-n-dodecyl ether concentrations shifts the half-maximal transformation to higher enzyme concentrations. Regardless of the detergent concentration, calmodulin decreases by about 2-fold the enzyme concentration required to observe half-maximal Ca2+-ATPase activation, without affecting the maximal velocity or cooperativity. This indicates that calmodulin facilitates interactions between enzyme molecules. The fluorescein-5'-isothiocyanate-modified Ca2+-ATPase shows an increase in fluorescence polarization which occurs over the same narrow concentration range that is seen with the Ca2+-ATPase activity, confirming association of enzyme molecules. Stimulation of the Ca2+-ATPase activity by calmodulin has revealed a stoichiometry of 0.73, with a dissociation constant of 1.6 nM calmodulin. We have demonstrated by use of calmodulin-Sepharose chromatography that both the calmodulin-dependent and independent Ca2+-ATPase forms bind calmodulin, even though stimulation of activity is seen only with the former one. Our data suggest the following two mechanisms for the Ca2+-ATPase activation: self-association of enzyme molecules or interaction with calmodulin.  相似文献   

16.
CDP-diglyceride : inositol transferase was inhibited by unsaturated fatty acids. The inhibitory activity decreased in the following order: arachidonic acid greater than linolenic acid greater than linoleic acid greater than oleic acid greater than or equal to palmitoleic acid. Saturated fatty acids such as myristic acid, palmitic acid, and stearic acid had no effect. Calcium ion also inhibited the activity of CDP-diglyceride : inositol transferase. In rat hepatocytes, arachidonic acid inhibited 32P incorporation into phosphatidylinositol and phosphatidic acid without any significant effect on 32P incorporation into phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Ca2+ ionophore A23187 also inhibited 32P incorporation into phosphatidylinositol. However, 32P incorporation into phosphatidic acid was stimulated with Ca2+ ionophore A23187. Phosphatidylinositol-specific phospholipase C was activated by unsaturated fatty acids. Polyunsaturated fatty acids such as arachidonic acid and linolenic acid had a stronger effect than di- and monounsaturated fatty acids. Saturated fatty acids had no effect on the phospholipase C activity. The phospholipase C required Ca2+ for activity. Arachidonic acid and Ca2+ had synergistic effects. These results suggest the reciprocal regulation of phosphatidylinositol synthesis and breakdown by unsaturated fatty acids and Ca2+.  相似文献   

17.
The influence of modified plasma membrane fatty acid composition on cellular strontium accumulation in Saccharomyces cerevisiae was investigated. Growth of S. cerevisiae in the presence of 1 mM linoleate (18:2) (which results in 18:2 incorporation to approximately 70% of total cellular and plasma membrane fatty acids, with no effect on growth rate) yielded cells that accumulated Sr2+ intracellularly at approximately twice the rate of S. cerevisiae grown without a fatty acid supplement. This effect was evident over a wide range of external Sr2+ concentrations (25 microM to 5 mM) and increased with the extent of cellular 18:2 incorporation. Stimulation of Sr2+ accumulation was not evident following enrichment of S. cerevisiae with either palmitoleate (16:1), linolenate (18:3) (n-3 and n-6 isomers), or eicosadienoate (20:2) (n-6 and n-9 isomers). Competition experiments revealed that Ca2+- and Mg2+-induced inhibition of Sr2+ accumulation did not differ between unsupplemented and 18:2-supplemented cells. Treatment with trifluoperazine (TFP) (which can act as a calmodulin antagonist and Ca2+-ATPase inhibitor), at a low concentration that precluded nonspecific K+ efflux, increased intracellular Sr2+ accumulation by approximately 3.6- and 1.4-fold in unsupplemented and 18:2-supplemented cells, respectively. Thus, TFP abolished the enhanced Sr2+ accumulation ability of 18:2-supplemented cells. Moreover, the rate of Sr2+ release from Sr2+-loaded fatty acid-unsupplemented cells was found to be at least twice as great as that from Sr2+-loaded 18:2-enriched cells. The influence of enrichment with other fatty acids on Sr2+ efflux was variable. The results reveal an enhanced Sr2+ accumulation ability of S. cerevisiae following 18:2-enrichment, which is attributed to diminished Sr2+ efflux activity in these cells.  相似文献   

18.
The Ca2+-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes, which is part of the Ca2+ pump, can be activated by binding of calmodulin. Rate constants (k1) for association of calmodulin and enzyme, which depends on the Ca2+ concentration, have been determined by the aid of an enzyme model. k1 increased from 0.25 . 10(6) to 17.3 . 10(6) M-1 . min-1 (70 times) when the free Ca2+ concentration was raised from 0.7 to 20 microM. The binding of calmodulin to the Ca2+-ATPase is reversible. The rate constants (k-1) for dissociation of enzyme-calmodulin complex decreased from 6.0 to 0.044 min-1 (135 times) when the free Ca2+ concentration was increased from 0.1 to 2-20 microM. The apparent dissociation constant Kd = k-1/k1 accordingly increased from 2.5 nM to 25 microM (or higher) when the Ca2+ concentration was reduced from 20 to 0.1 microM. Therefore, at 10(-7) M free Ca2+ most of the Ca2+-pump enzyme will not bind calmodulin. For the intact cell the time dependences of activation and deactivation of the Ca2+-pump enzyme have been estimated from the rate constants above. The results suggest that the Ca2+ pump is well suited to maintain a cytosolic concentration of 10(-7) M free Ca2+ (or lower) in the unstimulated cell and, when the cell is stimulated, to allow transient Ca2+ signals up to approx. 10(-5) M in the cytosol.  相似文献   

19.
Arachidonic acid and unsaturated C18 fatty acids at concentrations near 10(-5) M markedly inhibited (H+ + K+)-ATPase in hog or rat gastric membranes. Arachidonic acid was a more potent inhibitor than unsaturated C18 fatty acids, but the involvement of the metabolites of arachidonic acid cascade was ruled out. Linolenic acid inhibited the formation of phosphoenzyme and the K+ -dependent p-nitrophenylphosphatase activity of the hog ATPase. Treatment with fatty acid-free bovine serum albumin abolished only the inhibitory effect of the fatty acid on the phosphatase activity without restoring the overall ATPase action. These data suggest the existence of at least two groups of hydrophobic binding sites in the gastric ATPase for unsaturated long-chain fatty acids which affect differentially the catalytic reactions of the ATPase. (H+ + K+)-ATPase in rat gastric membranes was found more susceptible to the fatty acid inhibition and also more unstable than the ATPase in hog gastric membranes. The presence of a millimolar level of lanthanum chloride or ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid stabilized the rat ATPase probably via the inhibition of Ca2+ -dependent phospholipases in the gastric membranes.  相似文献   

20.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号