首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

2.
The aim of the study was to obtain an efficient system for Carlina acaulis subsp. simplex propagation. The experimental materials were shoot tips, fragments of hipocotyls, cotyledons and roots isolated from 10-day-old seedlings. The explants were transferred to the proliferation medium supplemented with different types of cytokinin: BA (13.3 μM), kinetin (13.9 μM) and zeatin (13.7 μM) in combination with NAA (0.54 μM). The best morphogenetic response was observed when explants were cultured on the BA supplemented medium. The maximum shoot organogenesis frequency was observed for shoot tip (nearly 94%). On average 8.6 axillary shoots were induced per explant. Multiplication rate increased during the first three subcultures. The shoots revealed a wide range of morphogenetic responses. Differences were observed in the presence or absence of hair on the surface of lamina. These changes had epigenetic character and were the effect of changes in DNA methylation, which is shown by differences in methylation pattern between 18S rRNA and 25S rRNA genes in the analyzed regenerated plants. Nearly 94% of plantlets were rooted on auxin lacking medium. Addition of auxin (NAA or IAA) increased both the rooting percentage (100%) and the number of roots per shoot, but their growth was inhibited. Shortening of the auxin exposition time reduced the number of roots. Moreover, high efficiency (90%) was observed for ex vitro rooting. Plantlets with a large number of roots survived better than the ones with only a few roots. Plants were able to flower and gave viable seeds.  相似文献   

3.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

4.
Summary Triiodobenzoic acid (TIBA), an anti-auxin, was found to inhibit both shoot and root formation in cultured excised leaf explants of tobacco (Nicotiana tabacum L.). The shoot formation (SF) medium used required only exogenous cytokinin (N6-benzyladenine) and the root formation (RF) medium required both auxin (indole-3-butyric acid) and cytokinin (kinetin). By transferring the explants from SF or RF media to SF or RF media with TIBA (4.0×10−5 M), respectively or vice versa, at different times in culture, it was found that TIBA inhibition was at the time of meristemoid formation and after determination of organogenesis. This indicates that TIBA interfered with endogenous auxin involvement in organized cell division.  相似文献   

5.
Using seedlings derived from the shoot apex of annatto (Bixa orellana L. cv. Bico-de-Pato) we observed the rooting frequency of B. orellana, the number and length of roots and the rate of ethylene production during 30 d in culture. The rhizogenesis response was affected by auxins (NAA or IBA) and by both the ethylene biosynthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and the inhibitor 2-aminoethoxyvinylglycine (AVG). Auxin supplementation to the medium resulted in root induction, ethylene production, and an undesirable callusing in the epidermal and cortical tissues. Irrespective of the presence of auxins, supplementing the medium with ACC promoted ethylene biosynthesis and callusing, which resulted in increased cell proliferation mainly in the cortical and vascular tissues, while the epidermis was mostly unaltered. In both ACC and auxin-supplemented medium, increased ethylene production and callusing occurred, suggesting a synergistic effect between these two responses. ACC was capable of inducing adventitious root formation, but the roots produced had a wrinkled appearance when compared to normal roots. Conversely, AVG reduced ethylene production and callusing, while the epidermis, cortex, and inner tissues remained unaltered, regardless of the presence of auxins. AVG was beneficial in these aspects, although its application led to a reduction in the number of roots and in the average root length. In conclusion, it was not possible to establish a direct relation between ethylene and rooting, but we hypothesize that, under the experimental conditions described, ethylene may enhance tissue sensitivity to auxin. However, ethylene did not seem essential to the rhizogenesis process in annatto.  相似文献   

6.
Abstract   The rooting capacity of microshoots derived from two mature Eucalyptus urophylla X Eucalyptus grandis half-sib clones kept for 3 y under intensive micropropagation was assessed in different in vitro conditions. A first set of experiments established that clone 147 microshoots rooted earlier and in greater proportions, while producing more adventitious roots overall than their homologs from clone 149. Modifying the composition of the basal 1/2-MS-derived rooting medium by 1/4-MS or Knop macronutrients, or reducing sucrose concentration to 10 g l−1 did not enhance the rooting rates. However, together with the growth regulators added, they had a significant effect on the number of adventitious roots formed. With rooting rates reaching 81%, the higher rootability of clone 147 over clone 149 was further confirmed by the second set of experiments with significant effects of the various auxins tested and strong clone × auxin interactions on the proportions of rooted microshoots and on the number of adventitious roots. The best rooting scores were given by 5 μM indole-3-butyric acid (IBA) and 12.5 μM 1-naphthaleneacetic acid (NAA), whereas the microshoots exposed to 5 or 12.5 μM indole-3-acetic acid (IAA) were less responsive. Lower light intensities did not improve significantly root capacities, although differences might exist according to the genotype. Overall, root and shoot elongation was stimulated by light. At the end of the experiment, the rooted microshoots were markedly taller than the non-rooted ones, with significant influences of auxins and light intensity, and to a lesser extent, of the genotypes.  相似文献   

7.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

8.
Studies on rooting of microshoots of smokebush (Cotinus coggygria Mill, var. Royal Purple), a woody ornamental, were carried out in vitro. Microshoots were rooted in a mixed-auxin regime (indole 3-acetic acid, indole butyric acid [IBA], and naphthalene acetic acid) or singly in the above auxins and the 2,4 dichlorophenoxyacetic acid (2,4-D) over a wide concentration range. Indole butyric acid at 10 μM proved to be the most suitable treatment, producing less basal callus, 100% rooting, and earlier root emergence than the other treatments. No roots were formed with 2,4-D. A 6-day root induction period was obtained with 10 μM of IBA. Histological studies revealed increased mitotic activity after 3 d in culture in the medullary ray cells, which led to root primordium formation, several of which were formed simultaneously around the base of the explant. The vascular tissues of these primordia connected to those of the explant, and roots began to emerge from the base by day 10. Thus, direct rhizogenesis occurred with the IBA treatment, as opposed to the roots that were formed in the basal callus under the mixed-auxin regime.  相似文献   

9.
10.
To investigate the spatial and temporal dependence of hormonal regulation during gravitropism, we compared the effects of root cap application of indole-3-acetic acid (IAA) and abscisic acid (ABA) with gene expression changes occurring naturally during gravitropic reaction of Brassica rapa roots. The expression of auxin, ABA, and metabolism-related genes in the tip, elongation zone, and maturation zone varied with time, location, and hormone concentration and characterized polar auxin transport. IAA was transported readily shootward and inhibited growth more than ABA. Expression of PIN3 and IAA5 in the elongation zone showed downregulation on the convex but upregulation on the concave side. Both PIN7 and IAA5 responded near maximally to 10?8 M IAA within 30 min, suggesting that auxin activates its own transport system. Ubiquitin 1 (UBQ1) responded after a lag time of more than 1 h to IAA. The metabolic control gene Phosphoenolpyruvate carboxylase 1 (PEPC1) was more sensitive to ABA but upregulated by high concentrations of either hormone. The time course and duration of gene activation suggests that ABA is not involved in gravitropic curvature, differential elongation is not simply explained by IAA-induced upregulation, and that reference genes are sensitive to auxin.  相似文献   

11.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

12.
The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in l-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 μg ml−1) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

13.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

14.
In vitro regeneration through somatic embryogenesis as well as organogenesis using cotyledon of a woody medicinal legume, Cassia angustifolia is reported. The cotyledons dissected from semi-mature seeds, if inoculated on Murashige and Skoog’s medium (MS) supplemented with auxin alone or in combination with cytokinin, produced direct and indirect somatic embryos. A maximum of 14.36 ± 2.26 somatic embryos per 20 mg of explants including callus were produced in 70% cultures on MS medium with 2.5 μM benzyladenine (BA) + 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Although the percentage of embryogenic cultures was higher (83.33%) at 10 μM 2,4-D + 1 μM BA, the average number of somatic embryos was much less (7.6 ± 0.85) at this level, whereas at 2.5 μM BA and 5 μM 2,4-D, there was a simultaneous formation of both somatic embryos and shoots. The somatic embryos, although started germinating on the same medium, developed into full plantlets only if transferred to MS basal with 2% sucrose. Cytokinins alone did not induce somatic embryogenesis, but formed multiple shoots. Five micromolar BA proved optimum for recurrently inducing shoots in the competent callus with a maximum average of 12.04 ± 2.10 shoots and shoot length of 2.26 ± 0.03 cm. Nearly 91.6% shoots (2–2.5 cm in size) organized an average of 5.12 ± 0.58 roots on half strength MS + 10 μM indole-3-butyric acid. All the plantlets have been transferred successfully to soil. Types of auxin and its interaction with cytokinin significantly influenced somatic embryogenesis.  相似文献   

15.
An efficient micropropagation protocol was established for Capsicum chinense Jacq. cv. Umorok, a pungent chilli cultivar. Shoot-tip explants were cultured on Murashige and Skoog (MS) medium containing cytokinins (22.2–88.8 μM 6-benzylaminopurine, BAP, 23.2–93.0 μM kinetin, Kin, or 22.8–91.2 μM zeatin, Z) alone or in combination with 5.7 μM indole-3-acetic acid (IAA). Maximum number of shoots were induced on medium containing 91.2 μM Z or 31.1 μM BAP with 4.7 μM Kin. The separated shoots rooted and elongated on medium containing 2.5 or 4.9 μM indole-3-butyric acid (IBA). Axillary shoots were induced from in vitro raised plantlets by decapitating them. The axillary shoot-tip explants were used for further multiple shoot buds induction. A maximum of about 150 plantlets were obtained from a single seedling. Hardened and acclimatized plantlets were successfully established in the soil.  相似文献   

16.
In vitro propagation of Rhododendron ponticum L. subsp. baeticum, an endangered species present in limited and vulnerable populations as a Tertiary relict in the southern Iberian Peninsula, was attained. Several cytokinin:IAA ratios and a range of zeatin concentrations were evaluated for their effect on shoot multiplication from apical shoots and nodal segments. The type of cytokinin and the origin of the explant were the most important factors affecting shoot multiplication. The highest shoot multiplication rate was obtained from single-nodal explants on medium supplemented with zeatin. Increasing zeatin concentration promotes shoot multiplication independently of explant type, although this effect tends to decrease with higher zeatin concentration. Shoot growth was higher in apical shoots and it was not stimulated by the presence of auxin. A number of experiments were conducted to identify suitable procedures for rooting of in vitro produced shoots. The best results in terms of in vitro rooting were obtained with Andersons modified medium with macrosalts reduced to one-half, regardless of the auxin or its concentration in the medium. Although rooting frequency rose to 97% by basal immersion of shoots in auxin concentrated solution followed by in vitro culture on an auxin-free medium, the survival of the plants after 6 months of acclimatization was poor (50%). Best results (100% rooting and survival) were observed for ex vitro rooting. The micropropagated plants from this study were successfully reintroduced into their natural habitat (87% of survival after 8 months).  相似文献   

17.
Efficient plant regeneration systems both from shoot segments and via callus organogenesis were developed for Kosteletzkya pentacarpos (L.) Ledeb., a rare and endangered Eurasian species. In the experiments with existing meristems, factors affecting shoot proliferation, including explant type, i.e. decapitated and intact shoots, and plant growth regulators, indole-3-acetic acid or kinetin, were investigated. Shoot proliferation was significantly affected by the type of explant, the hormones and their interaction. The highest shoot multiplication rate was obtained from decapitated shoots. Increasing kinetin concentration promoted shoot elongation regardless of explant type. In intact shoots, shoot length was also affected by increasing auxin concentration, although this effect tends to decrease with higher concentration. Decapitated shoots were not responsive to the addition of auxin. Micropropagation through organogenesis from callus was also investigated. Calli were obtained from leaf, stem internode and root explants. Only the leaf-derived calli produced shoots and indole-3-acetic acid favoured increased numbers of shoots. A number of experiments were conducted for rooting of in vitro produced shoots. All of them induced high rooting frequency, the number and the length of roots being dependent on the strength of the basal medium. The use of 1–2 mg l−1 indole-3-butyric acid resulted in refining the optimal concentration for root elongation. The regenerated plants (70%) survived and flowered in their first vegetative period.  相似文献   

18.
A method is described for in vitro propagation of the critically endangered ‘Eneabba mallee’ (Eucalyptus impensa) from southwest Western Australia. Half-strength MS medium supplemented with 0.25 μM 6-benzylaminopurine and 2.5 μM kinetin resulted in the best combination of shoot multiplication and shoot quality compared to other treatments. Shoots of this species tended to be very compact under in vitro conditions. Shoot length was significantly enhanced with the addition of 0.5 or 1.0 μM gibberellic acid (A4 isomer) when compared to basal medium (no hormone supplements) or basal medium containing only cytokinin (0.5 μM zeatin). Up to 97.0 ± 3.0% of shoots produced roots on 1/2 MS medium supplemented with a combination of 5 μM indolebutyric acid and 0.5 μM α-naphthaleneacetic acid. Over 70% of shoots transferred to potting mixture remained viable after 3 months. This study has significantly progressed ex situ conservation initiatives for Eucalyptus impensa.  相似文献   

19.
Experiments have been carried out on seedling and primary leaf explants of Gentiana kurroo Royle. Morphogenic capacities of cotyledons, hypocotyls and roots were investigated using MS (1962) medium supplemented with 4.64 μM kinetin and 2.26, 4.52 or 9.04 μM 2,4-D. Percentage of callusing explants for each combination was inversely proportional to numbers of obtained embryos. Cotyledons showed the highest morphogenic capabilities. To assess the morphogenic potential of leaf explants, 189 combinations of auxin (NAA, dicamba and 2,4-D) and cytokinin (kinetin, BAP, zeatin, CPPU and TDZ) in different concentrations were tested. The presence of NAA with BAP and dicamba with zeatin produced the greatest number of differentiated somatic embryos. Microscopic analysis of responsive explants led to identifying rhizogenic centers, non-embryogenic and embryogenic cells. The best embryo conversion into germlings was obtained on MS medium containing 4.46 μM kinetin, 1.44 μM GA3 and 2.68 μM NAA or ½ MS. Both media were supplemented with 4.0% sucrose and 8.0% agar. Depending on explant origin and conversion medium, 55.8–71.0% of somatic embryos developed into germlings and plants.  相似文献   

20.
Summary Shoot regeneration in hairy root cultures of Solanum khasianum Clarke influences root growth, solasodine production. and permeabilization of solasodine into the medium. These parameters are dependent on exogenously supplied auxin and cytokinin: the effect being both concentration-and clone-dependent. Hairy root cultures with no shoot regeneration showed high permeabilization of solasodine into the medium by the sixth week of incubation, suggesting the medium acts as a sink for the solasodine synthesized by the roots. Solasodine in the culture medium was toxic to the transformed roots and caused browning of root tips. In a separate set of experiments, the hairy root cultures showed regeneration of approximately 50–70 mm long shoots after treatment with indole-3-acetic acid and kinetin. These hairy root cultures had inereased levels of solasodine production, compared to cultures without shoot regeneration. The plantlets formed in the hairy root cultures accumulated some of the solasodine, thereby reducing its permcabilization into the medium. Transport of solasodine from root to shoot reduced the toxic effect of solasodine in the root zone and extended the exponential growth phase by 8-10d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号