首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ethylene biosynthesis in peach fruitlet abscission   总被引:5,自引:0,他引:5  
  相似文献   

2.
Temporal and spatial expression patterns of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS1 and ACS2) and ACC oxidase (ACO), ACC concentration, and ethylene production in leaves and fruit of 'Valencia' orange (Citrus sinensis [L.] Osbeck) were examined in relation to differential abscission after treatment with 2-chloroethylphosphonic acid (ethephon) alone or in combination with guanfacine or clonidine, two G-protein-coupled alpha(2A)-adrenoreceptor selective agonists. Guanfacine and clonidine markedly reduced ethephon-enhanced leaf abscission, but had little effect on ethephon-enhanced fruit loosening. Ethephon-enhanced fruit and leaf ethylene production, and ACC concentration in fruit abscission zones, fruit peel, leaf abscission zones, and leaf blades were decreased by guanfacine. Guanfacine reduced ethephon-enhanced expression of ACS1 and ACO genes in leaf abscission zones and blades, but to a lesser extent in fruit abscission zones. The expression pattern of the ACS2 gene, however, was not associated with abscission. The results demonstrate that differential expression of ACS1 and ACO genes is associated with reduction of ethephon-enhanced leaf abscission by guanfacine, and suggest a link between G-protein-related signalling and abscission.  相似文献   

3.
McManus MT 《Annals of botany》2008,101(2):285-292
BACKGROUND AND AIMS: Two aspects of the competence of abscission zone cells as a specific class of hormone target cell are examined. The first is the competence of these target cells to respond to a remote stele-generated signal, and whether ethylene acts in concert with this signal to initiate abscission of the primary leaf in Phaseolus vulgaris. The second is to extend the concept of dual control of abscission cell competence. Can the concept of developmental memory that is retained by abscission cell of Phaseolus vulgaris post-separation in terms of the inductive/repressive control of beta-1,4-glucan endohydrolase (cellulase) activity exerted by ethylene/auxin be extended to the rachis abscission zone cells of Sambucus nigra? METHODS: Abscission assays were performed using the leaf petiole-pulvinus explants of P. vulgaris with the distal pulvinus stele removed. These (-stele) explants do not separate when treated with ethylene and require a stele-generated signal from the distal pulvinus for separation at the leaf petiole-pulvinis abscission zone. Using these explants, the role of ethylene was examined, using the ethylene action blocker, 1-methyl cyclopropene, as well as the significance of the tissue from which the stele signal originates. Further, leaf rachis abscission explants were excised from the compound leaves of S. nigra, and changes in the activity of cellulase in response to added ethylene and auxin post-separation was examined. KEY RESULTS: The use of (-stele) explants has confirmed that ethylene, with the stele-generated signal, is essential for abscission. Neither ethylene alone nor the stelar signal alone is sufficient. Further, in addition to the leaf pulvinus distal to the abscission zone, mid-rib tissue that is excised from senescent or green mid-rib tissue can also generate a competent stelar signal. Experiments with rachis abscission explants of S. nigra have shown that auxin, when added to cells post-separation can retard cellulase activity, with activity re-established with subsequent ethylene treatment. CONCLUSIONS: The triggers that initiate and regulate the separation process are complex with, in bean leaves at least, the generation of a signal (or signals) from remote tissues, in concert with ethylene, a requisite part of the process. Once evoked, abscission cells maintain a developmental memory such that the induction/repression mediated by ethylene/auxin that is observed prior to separation is also retained by the cells post-separation.  相似文献   

4.
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.  相似文献   

5.
6.
The physiology and anatomy of abscission has been studied in considerable detail; however, information on the regulation of gene expression in abscission has been limited because of a lack of probes for specific genes. We have identified and sequenced a 595 nucleotide bean (Phaseolus vulgaris cv Red Kidney) abscission cellulase cDNA clone (pBACl). The bean cellulase cDNA has extensive nucleic and amino acid sequence identity with the avocado cellulase cDNA pAV363. The 2.0 kilobase bean mRNA complementary to pBACl codes for a polypeptide of approximately 51 kilodalton (shown by hybrid-selection followed by in vitro translation). Bean cellulase antiserum is shown to immunoprecipitate a 51 kilodalton polypeptide from the in vitro translation products of abscission zone poly(A)+ RNA. Ethylene initiates bean leaf abscission and tissue-specific expression of cellulase mRNA. If ethylene treatment of bean explants was discontinued after 31 h and then 2,5-norbornadiene given to inhibit responses resulting from endogenously synthesized ethylene, polysomal cellulase mRNA hybridizing to pBACl decreased. Thus, ethylene is required not only to initiate abscission and cellulase gene expression but also to maintain continued accumulation of cellulase mRNA. Explants treated with auxin 4 hours prior to a 48 hour treatment with ethylene showed no substantial accumulation of RNA hybridizing to pBACl or expression of cellulase activity.  相似文献   

7.
Exposing ixora ( Ixora coccinea ) plants to chilling temperatures (3–9°C for 3 days) resulted in increased leaf abscission, initiated 3 days after transfer to 20°C. Exposure to chilling also induced a 7-fold increase in ethylene production rates of abscission zone (AZ) tissue during the initial 5 h after chilling. The ethylene burst resulted from the high levels of 1-aminocyclopropane-1-carboxylic acid (ACC) accumulated in the AZ during the chilling period. ACC levels following chilling decreased also due to enhanced conjugation to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC). Treating plants prior to chilling with antioxidants, such as butylated hydroxyanisole (BHA), n -propyl gallate (PG), and vitamin E, significantly reduced chilling-induced leaf abscission. This effect was obtained despite the fact that ethylene production in the treated plants resembled that of chilled plants receiving no BHA. In addition, exposure of plants to ethylene (0.5–10 μl l−1) for 1–3 days significantly enhanced leaf abscission only when they had been pre-chilled. These data imply that chilling-induced leaf abscission was closely correlated with increased sensitivity of the AZ to ethylene rather than with the chilling-induced ethylene burst. Based on the findings that the ethylene action inhibitor, 1-methylcyclopropene (1-MCP), and the antioxidant BHA inhibited both the chilling-induced and the ethylene-enhanced leaf abscission, it is concluded that: (1) although ethylene is essential for chilling-induced abscission, it is not the triggering factor; (2) oxidative processes derived from the chilling stress seem to be the trigger of chilling-induced leaf abscission, operating via increased sensitivity to ethylene.  相似文献   

8.
Role of polygalacturonase in bean leaf abscission   总被引:2,自引:0,他引:2       下载免费PDF全文
Berger RK  Reid PD 《Plant physiology》1979,63(6):1133-1137
The role of polygalacturonase in leaf abscission was studied in explants of Phaseolus vulgaris L. cv. Red Kidney. Bean polygalacturonase was partially characterized and comparisons were made between the bean enzyme and previously reported higher plant polygalacturonases. Polygalacturonase isolated from bean leaf abscission zones has a pH optimum between 4.5 and 5.0 and hydrolyzed polygalacturonides in an exo-fashion. Activity was found to be higher with a deesterified substrate than with an esterified pectin. No correlation between polygalacturonase activity and abscission was observed. Activity remained virtually constant over the course of abscission in explants aged either in air or in ethylene. The enzyme was primarily localized in the abscission zone, however, indicating a possible involvement in the abscission process. A theoretical model which could explain the relationship between polygalacturonase and bean leaf abscission is discussed.  相似文献   

9.
10.
Effect of 1-methylcyclopropene on ethylene-induced abscission in citrus   总被引:1,自引:0,他引:1  
Pre-treatment of citrus leaves and leaf explants ( Citrus sinensis [L.] Osbeck cv. Shamouti), with 1-methylcyclopropene (1-MCP), induced endogenous ethylene production when leaves were further incubated in air. The induction of ethylene production was 1-MCP concentration-dependent. Abscission was concomitantly delayed. In leaves pre-treated with 1-MCP followed by exposure to ethylene, abscission was significantly delayed in comparison with those without 1-MCP pre-treatment. When leaf explants were co-treated for 24 h with ethylene and 1-MCP, abscission was delayed quite efficiently. The Lineweaver-Burke plot yielded a half-maximal value of 0.234 μl l−1 for the effect of ethylene on abscission. 1-MCP−1 competed kinetically with ethylene with a Ki value of approximately 1.4−5.5 nl l−1 1-MCP. Under these experimental conditions there was some competition between 1-MCP and ethylene. However, ethylene was not able to completely counteract the inhibitory effect of 1-MCP. Pre-treatment with 1-MCP, followed by exogenous ethylene treatment, suppressed the induction of endo- β -glucanase (EG) activity at the laminar abscission zone. The ethylene-dependent accumulation of the hydrolyse gene was demonstrated by blocking the accumulation of CsCel a1 mRNA by 1-MCP. Six hours of exposure of leaves to 1-MCP at various times during a total of 24 h ethylene treatment efficiently reversed ethylene induction of CsCel a1 gene at mRNA level up to 18 h. The results demonstrate that the induction of abscission by ethylene is controlled at mRNA level at the abscission zone.  相似文献   

11.
12.
13.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

14.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

15.
16.
Phenolic compounds appear to be involved in a number of regulatoryactivities in plants. During the last decade an increasing amountof evidence has brought to light the role played by salicylicacid in a number of physiological processes. Particularly interestingis the inhibitory effect of salicylic acid on ethylene biosynthesis,which might make this natural plant compound a useful tool forcontrolling some of the responses usually promoted by ethylene.Our data show that salicylic acid is actually able to reduceleaf abscission in both peach and pepper plants. Biochemicalanalyses have revealed that the enzyme usually involved in thisphenomenon (cellulase, EC 3.2.1.4 [EC] .) does not increase followingactivation of leaf abscission in plants treated with salicylicacid. In contrast, control plants show a marked increase inthe levels of both enzyme activity and cellulase protein. Flushingplants with exogenous ethylene in the presence of salicylicacid induces an increase in cellulase expression which, however,does not equal the level induced in plants without salicylicacid. Key words: Cellulase, leaf abscission, peach, pepper, salicylic acid  相似文献   

17.
Abscission: role of abscisic Acid   总被引:12,自引:9,他引:3       下载免费PDF全文
The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity.  相似文献   

18.
The stylar abscission bioassay was used to identify five stimulators of lemon (Citrus limon cv. Lisbon) abscission in pistil explants. The stimulators (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea, N6-benzyladenine, kinetin, zeatin, and N6-isopentenyladenine), which are all cytokinins, accelerated the timing of expiant abscission when they were added as supplements (100 μM) to the test medium. To study possible relationships between cytokinins, ethylene, and abscission, we measured accumulating ethylene concentrations in sealed cultures and endogenous 1 -aminocyclopropane-1-carboxylic aicd (ACC) in explants incubated on test medium plus or minus 100 μM N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron), 100 μM N6-benzyladenine (bzl6Ade), or 2 μM picloram, an inhibitor of stylar abscission. Although ethylene accumulated to similar levels in all treatments, the concentrations obtained with picloram and thidiazuron were, respectively, higher and lower than those obtained in control cultures. The accumulation of ethylene in cultures with bzl6Ade, on the other hand, was not significantly different from controls. ACC concentrations in explants remained fairly constant in all treatments during the incubations, except in explants on thidiazuron, in which case the ACC concentration declined slightly. We conclude that cytokinins can stimulateCitrus abscissionin vitro and that this stimulation is not accompanied by marked effects on either measurable ethylene or ACC concentrations. Our finding that 100 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, counteracts the stimulation of abscission by bzl6Ade suggests that a minimum level of ethylene production is required for the cytokinin effect. The possibility that cytokinins affect other aspects related to ethylene, such as biosynthetic rates, metabolism, or tissue retention, is not excluded by our results.  相似文献   

19.
20.
The present study was carried out to understand the mechanism of salt stress amelioration in red pepper plants by inoculation of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. In general, ethylene production, ACC concentration, ACC synthase (ACS), and ACC oxidase (ACO) enzyme activities increased with increasing levels of salt stress. Treatment with halotolerant bacteria reduced ethylene production by 47–64%, ACC concentration by 47–55% and ACO activity by 18–19% in salt-stressed (150 mmol NaCl) red pepper seedlings compared to uninoculated controls. ACS activity was lower in red pepper seedlings treated with Bacillus aryabhattai RS341 but higher in seedlings treated with Brevibacterium epidermidis RS15 (44%) and Micrococcus yunnanensis RS222 (23%) under salt-stressed conditions as compared to uninoculated controls. A significant increase was recorded in red pepper plant growth under salt stress when treated with ACC deaminase-producing halotolerant bacteria as compared to uninoculated controls. The results of this study collectively suggest that salt stress enhanced ethylene production by increasing enzyme activities of the ethylene biosynthetic pathway. Inoculation with ACC deaminase-producing halotolerant bacteria plays an important role in ethylene metabolism, particularly by reducing the ACC concentration, although a direct effect on reducing ACO activity was also observed. It is suggested that growth promotion in inoculated red pepper plants under inhibitory levels of salt stress is due to ACC deaminase activity present in the halotolerant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号