首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
High specific activity tritiated thymidine (HSA-[3H]TdR) and colcemid were given in cytotoxic doses and regimens to B6CF1/Anl mice. The number of cells per intestinal crypt was reduced by the S-phase-specific (HSA-[3H]TdR and the metaphase blocking and cytotoxic effect of multiple injections of colcemid. In 50-day-old mice, the cytotoxic effect of multiple injections of colcemid reduced both the number of cells per crypt and the clonogenic cell survival. However, the number of surviving intestinal clonogenic or stem cells, assayed by the microcolony technique, did not change in 110--130-day old mice. These data suggest that most of the cells at risk from these cytotoxic agents are not clonogenic in adult 110--130-day old mice but are the cells in amplification division. However, since the stem cells of young mice are more susceptible to colcemid, they are apparently in a more rapid cell cycle than those of older mice. The clonogenic cell survival measured in 110--130-day old mice after a single radiation dose of 14 Gy (1400 rad) responded in a non-linear way to increasing time of continuous colcemid cytotoxicity. These data suggest that the intestinal stem cells can respond to amplification compartment cell death by a shortening of their cell cycle and thus, over time, the number of stem cells at risk to colcemid cytotoxicity increases.  相似文献   

2.
High specific activity tritiated thymidine (HSA-[3H]TdR) and colcemid were given in cytotoxic doses and regimens to B6CF1/Anl mice. The number of cells per intestinal crypt was reduced by the S-phase-specific HSA-[3H]TdR and the metaphase blocking and cytotoxic effect of multiple injections of colcemid. In 50-day old mice, the cytotoxic effect of multiple injections of colcemid reduced both the number of cells per crypt and the clonogenic cell survival. However, the number of surviving intestinal clonogenic or stem cells, assayed by the micro-colony technique, did not change in 110–130-day old mice. These data suggest that most of the cells at risk from these cytotoxic agents are not clonogenic in adult 110–130-day old mice but are the cells in amplification division. However, since the stem cells of young mice are more susceptible to colcemid, they are apparently in a more rapid cell cycle than those of older mice. The clonogenic cell survival measured in 110–130-day old mice after a single radiation dose of 14 Gy (1400 rad) responded in a non-linear way to increasing time of continuous colcemid cytotoxicity. These data suggest that the intestinal stem cells can respond to amplification compartment cell death by a shortening of their cell cycle and thus, over time, the number of stem cells at risk to colcemid cytotoxicity increases.  相似文献   

3.
Abstract. The radiosensitivity of pronuclear mouse (B6D2 F1 x ICR) embryos has been measured in vitro as a function of time during the cell cycle. This was done by measuring the dose of X-rays (LD50) required to prevent development of 50% of the pronuclear embryos to the blastocyst stage in 5 days of culture. The LD50 was found to vary from 1 to 2 Gy during the period from G1 to the first cleavage. The cell cycle in the pronuclear embryo was analysed by [3H]thymidine autoradiography. Compared with earlier studies on two-cell mouse embryo radiosensitivity, the pronuclear embryos appear to be more sensitive to radiation than the two-cell embryos. If, however, one considers the radiation sensitivity on a blastomere basis, the pronuclear embryos are not different in their radiation sensitivity from the two-cell embryos. Thus, during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo.  相似文献   

4.
Variations in the number of radiation-induced morphologically dead or dying cells (apoptotic cells) in the crypts in the small intestine of the mouse have been studied throughout a 24-h period under a normal light regimen (light on, 07.00-19.00 h; light off, 19.00-07.00 h). A clear circadian rhythm was displayed in the apoptotic incidence 3 or 6 h after irradiation for each gamma-ray dose studied (range 0.14-9.0 Gy). The most prominent circadian rhythm was obtained after 0.5 Gy. The peak time of day for inducing apoptosis was 06.00-09.00 h, and the trough occurred at 18.00-21.00 h. Some mice were also transferred to a room with the light cycle reversed, and were irradiated on different days after the transfer. The apoptosis induced by 0.5 Gy or 9.0 Gy, or the number of surviving crypts (microcolonies) after 11.0 Gy or 13.0 Gy was examined. The transition point for reversal (i.e. the switch time from the normal-light pattern to the reversed-light pattern) of the circadian rhythm in apoptosis (after 0.5 Gy) occurred 7 days after the transfer and the rhythm was reversed by 14 days. The rhythm for crypt survival (i.e. for clonogenic cell radiosensitivity) was disturbed on 1 day and the transition point for reversal occurred 3 days after the transfer. The rhythm became reversed by 7 days. These observations are discussed in relation to the identity of clonogenic cells, (functional) stem cells, proliferating transit cells and the cells sensitive to small doses of radiation (i.e. hypersensitive cells) in the crypt.  相似文献   

5.
Spleen cells (from BALB/c mice immunized with the C57BL/6 lymphoma EL4, or from non-immune BALB/c) were incubated on monolayers of [C57BL/6 times BALB/cF1 (B6CF1) spleen cells on polylysine-coated polystyrene Petri plate, for 1/2 hr or for 1 hr at 37 degrees C followed by centrifugation of the monolayers for 5 min at 70 times G to 110 times G at 34 to 37 degrees C. Control monolayers were BALB/c spleen cells. As measured by the Simonsen spleen weight assay in neonatal mice, graft-vs-host (GVH) activity was partially depleted in cell populations nonadherent to B6CF1 monolayers. Residual GVH activity of these nonadherent cells was about half that of cells incubated on the control syngeneic monolayers (the mean of eight experiments was 49% +/- 11% S.D.). Two or three consecutive cycles of incubation and centrifugation did not significantly diminish the residual GVH activity, suggesting that spleen cells with GVH activity are heterogeneous with respect to binding to allogeneic target cells under the above conditions. Cell populations nonadherent to third-part [A times AL]F1 monolayers retained full activity, and cell populations partially depleted of GVH activity in B6CF1 neonates had full activity in third-party [BALB/c times AL]F1 neonates.  相似文献   

6.
CFU-DC in the bone marrow of CBA and BALB/c mice, which are contrast in total radiosensitivity, have close characteristics: D0 is 1.35 and 1.32 Gy, respectively. The proliferation rate of CFU-DC after single exposure to a non-lethal dose of 4 Gy is higher in CBA than in BALB/c mice. The time of doubling the CFU-DC population during the period of exponential growth after irradiation is 40 and 72 h for CBA and BALB/c mice, respectively.  相似文献   

7.
The relationship of clonogenic cells, cellular radiation sensitivity at tumor control does in vivo, and tumor rescuing units at different tumor sizes was investigated in the human squamous cell carcinoma FaDu growing in NCr/Sed nude mice. The composition of the tumors was determined in single cell suspensions and compared to tumor control data after single-dose irradiation. To avoid the influence of varying oxygen concentrations in the tumors, all irradiations were performed under clamp hypoxia. Nude mice and animals further immunosuppressed by 6-Gy whole-body irradiation were used to assess the immunological effects. The numbers of total cells, cells excluding trypan blue, host cells, and colony-forming cells increased linearly with the weight of FaDu tumors. Comparable results were obtained for cell suspensions prepared from tumors growing in nude of pretreated nude mice. The radiation dose required to control 50% of tumors (TCD50) of different sizes between 36 and 470 mm3 increased from 52.1 to 60.1 Gy when the tumors were maintained in normal nude mice and from 50.8 to 61.3 Gy in whole-body-irradiated mice. The D0 of FaDu cells in vivo was calculated by regression analysis of TCD50 vs the logarithm of the clonogenic cell number, assuming an oxygen enhancement ratio of 3.0. The resultant D0S of 1.1 and 1.2 Gy in vivo correspond well to the radiosensitivity of FaDu cells in vitro determined previously. Assuming the single-hit multitarget model of cell killing and extrapolation numbers between 2 and 20, the mean number of tumor rescuing units would be 10(5) to 10(6) for a 100-mm3 tumor growing in whole-body-irradiated nude mice. Comparison of the number of tumor rescuing units to the estimated number of clonogenic cells does not conflict with the assumption that every surviving clonogenic cell is able to repopulate FaDu tumors after irradiation; however, it seems more likely that more than one clonogenic cells is necessary. The proportion of tumor rescuing units in the clonogenic cell population is independent of tumor size.  相似文献   

8.
The sensitivity of the target cells responsible for the gastrointestinal syndrome in mice was deduced from the steepness of the dose-survival curve for mice assessed on Day 7 after irradiation. The D0 value was 1.25 +/- 0.22 Gy, virtually identical to the value of 1.23 +/- 0.08 measured for microcolony-forming cells (clonogens) over about the same range of dose in concurrent experiments. The survival of clonogens was similar when assayed in mice surviving to Days 3, 4, or 5, but clonogenic sensitivity was lower when assessed on Day 7. This was shown at one dose to be due largely to a selection of mice with high colony counts with only a small contribution from crypt budding. The LD50 for mice corresponded to a surviving fraction of crypts of about 0.35. An injection of 5 mg streptomycin sulphate ip daily for 5 days after irradiation increased the latent period by about 1 day, increased the LD50 by about 1.4 Gy, but did not significantly change the survival of clonogens. These studies are the first to test and satisfy the interpretation of a dose-response curve for animal survival in terms of "target cell" survival, where measurements of both are made over a similar range of dose in concurrent experiments.  相似文献   

9.
Female mice of the BALB/c strain were superovulated, mated with males of the same strain, and irradiated with 1 Gy of X-rays at hourly intervals during the first cell cycle of the embryos. Two types of effects were found in the embryos, depending on the time of X-irradiation. When irradiation was delivered between 14 and 21 h after human chorionic gonadotrophin (hCG) injection, cultured two-cell embryos developed normally up to the morula stage, where a high mortality occurred. On the other hand, when irradiation was given between 17 and 24 h after hCG injection, a high proportion of the eggs was unable to cleave and remained blocked at the one-cell stage. Cytofluorometric analysis of the pronuclear DNA content of uncleaved zygotes showed that DNA synthesis was unaffected by X-irradiation, and that they were blocked in G2 phase of the first cell cycle. Similar studies on other strains, as well as reciprocal crosses between BALB/c and F1(female BALB/c X male C57 BLACK) mice showed that the 'one-cell block' is determined by the maternal genotype and results most probably from a direct action of X-rays on a radiosensitive cytoplasmic factor necessary for the first embryonic cell division, and appearing 17 h after hCG injection. A high proportion of blocked zygotes (30-40 per cent) recovered partially, cleaved with a delay of about 20 h, and died soon after, almost none of them being able to reach the blastocyst stage. At the time of maximum radiosensitivity, the LD50 for development up to the blastocyst stage was 0.95 Gy.  相似文献   

10.
The variable severity of lung disease associated with cystic fibrosis (CF) cannot be explained by the genotype of the cystic fibrosis transmembrane conductance regulator (CFTR) locus alone. Lung disease has been reported in a congenic CF mouse model of C57BL/6J genetic background (B6 CF), in the absence of detectable infection, but not in CF mice of mixed genetic background, nor in wild-type animals maintained in identical environments. In this report, studies are presented to show that the same CF mutation in mice of a BALB/c background (BALB CF) results in minimal lung disease. By 12 weeks of age B6 CF mice developed a lung disease consisting of mononuclear cell interstitial infiltrate and fibrosis, and BALB CF or littermate control mice developed minimal histopathology. Therefore, it is possible to identify the chromosomal locations of genes that can contribute to the susceptibility to lung disease in B6 CF mice compared with BALB CF mice by means of a quantitative trait loci (QTL) mapping strategy based on the variable histology of the (B6 × BALB) F2 CF mice. Significant linkage of the fibrotic lung phenotype was detected for a region on Chromosome (Chr) 6, defined by markers D6Mit194 to D6Mit201, and suggestive linkage was found for regions on Chr 1, 2, 10, and 17. Additional loci, suggestive of linkage, were also detected for the interstitial thickening phenotype. Most of these putative loci are specific to the sex of the animals. These results suggest that multiple genes can influence the severity of CF lung disease in mice.  相似文献   

11.
The early effects of an irradiation on the intestinal epithelium have been evaluated, at the tissular level, by LD50 after single and multifraction irradiation, and, at the cellular level, by numeration of the regenerated intestinal crypts (Withers technique) after a single fraction irradiation. From the set of informations provided by both criteria, one derived the values of the parameters defining the survival curve of the intestinal clonogenic crypt cells after irradiation by gamma-rays (two component model): D0 = 1.5 Gy, 1D0 = 4.5 Gy, nD0 = 2.25 Gy and n = 20. In other respects, the p(65) + Be neutrons RBE (ref. 60-Cobalt) after a single fraction irradiation is equal to 1.75 +/- 0.2 and 1.64 +/- 0.25 for the LD50 at the 5th day and for the regeneration of 50 crypts after 3.5 days respectively.  相似文献   

12.
Mouse adenovirus type 1 (MAV-1) produces a lethal disease in newborn or suckling mice characterized by infectious virus and viral lesions in multiple organs. Previous reports of MAV-1 infection of adult mice generally described serologic evidence of infection without morbidity or mortality. However, our current results demonstrate that MAV-1 causes a fatal illness in adult C57BL/6(B6) mice (50% lethal dose, [LD50], 10(3.0) PFU) but not in adult BALB/c mice at all of the doses tested (LD50, > or = 10(5.0) PFU). Adult (BALB/c x B6)F1 mice were intermediately susceptible (LD50, 10(4.5) PFU). Clinically, the sensitive B6 mice showed symptoms of acute central nervous system (CNS) disease, including tremors, seizures, ataxia, and paralysis. Light microscopic examination of CNS tissue from the B6 animals revealed petechial hemorrhages, edema, neovascularization, and mild inflammation in the brain and spinal cord. Analysis by electron microscopy showed evidence of inflammation, such as activated microglia, as well as swollen astrocytic endfeet and perivascular lipid deposition indicative of blood-brain barrier dysfunction. Outside of the CNS, the only significant pathological findings were foci of cytolysis in the splenic white pulp. Assessment of viral replication from multiple tissues was performed by using RNase protection assays with an antisense MAV-1 early region 1a probe. The greatest amounts of viral mRNA in MAV-1-infected B6 animals were located in the brain and spinal cord. Less viral message was detected in the spleen, lungs, and heart. No viral mRNA was detected in BALB/c mouse tissue, with the exception of low levels in the heart. Viral titers of organ tissues were also determined and were concordant with RNase protection findings on the brain and spinal cord but failed to demonstrate significant infectious virus in additional organs. Our experiments demonstrate that MAV-1 has a striking tropism for the CNS that is strain dependent, and this provides an informative in vivo model for the study of adenoviral pathogenesis.  相似文献   

13.
The radiosensitivity of spermatogonia was found to be greater by up to a factor of 2 in C3H mice than in B6D2F1 mice, whether assessed for the highly sensitive spermatogonia (types A2 to In) or the much more resistant clonogenic spermatogonia which repopulate tubules. The latter were similarly resistant in the B6D2F1 hybrid and in the DBA2 parent, but were much more sensitive in the C57BL parent strain. A difference in sensitivity by up to a factor of 2 results in a variation by a factor of 10 or more in the level of survival of clonogenic cells after high doses. This variation is also observed when comparing data in the literature from different authors using various strains of mice. Using the radiosensitizer misonidazole, it was shown that hypoxia did not play a major role in the lesser sensitivity demonstrated in B6D2F1 mice. The variation in sensitivity is similar to the range reported in the literature for reciprocal translocations.  相似文献   

14.
Embryonic stem (ES) cells from a C57BL/6N (B6N) background injected into B6(Cg)-Tyrc-2J/J (B6-albino) recipient blastocysts are commonly used for generating genetically modified mouse models. To understand the influence of the recipient blastocyst strain on germline transmission, BALB/cAnNTac and B6-albino germline transmission rates were compared using the C57BL6/N-derived C2 ES cell line. A total of 92 ES cell clones from 27 constructs were injected. We compared blastocyst yield, birth rate, chimera formation rate, and high-percentage (>50 %) male chimera formation rate. For germline transmission, we analyzed 24 clones from 19 constructs, which generated high-percentage male chimeras from both donor strains. B6-albino hosts resulted in higher mean blastocyst yields per donor than did BALB/c ones (3.6 vs. 2.5). However, BALB/c hosts resulted in a higher birth rate than B6-albino ones (36 vs. 27 %), a higher chimera formation rate (50 vs. 42 %), a higher high-percentage male chimera rate (10 vs. 8 %), and a higher germline transmission rate (65 vs. 49 %), respectively. Our data suggest that BALB/c is a suitable blastocyst host strain for C2 ES cells and has an advantage over the B6-albino strain for receiving the injection of C2 ES cells.  相似文献   

15.
The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD50/30) and gut (LD50/6) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The reference radiation was 60Co gamma rays. The LD50/30 and LD50/6 for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60Co gamma rays. The D0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60Co gamma rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources, while the corresponding split-dose survival ratio for 60Co gamma rays was consistantly above 1, reaching a maximum of 1.7 with a 1-hr interval between doses. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60Co gamma rays. The RBE estimates for LD50/30 were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD50/6, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D0 1.4 (Fermilab) and 2.8 (JANUS).  相似文献   

16.
The cells of the proliferative compartment in the crypt of the small intestine undergo a step by step differentiation and/or maturation from stem cells to the functional cells on the villi. The consequent hierarchical organization of the proliferative cell population can be related to the actual position of cells within the crypt. The stem cells are found near the bottom of the crypt with the more mature cells occurring at increasingly higher positions. The sensitivity of proliferative cells in the crypt of small intestine to radiation-induced mitotic delay was investigated at each position within the crypt. Using the stathmokinetic method (vincristine accumulation), the following were noted. The yield of mitotic figures 3 h immediately after irradiation showed a strong cell position dependence with the cells at the base of the crypt being most inhibited and those at the top of the proliferative compartment least affected. The mitotic yields were largely unaffected for the first 15 min suggesting that there is a transition point (Tp) for radiosensitivity which is located about 15 min before metaphase for all crypt cells. Cells located less than 15 min from metaphase are unaffected while those more than 15 min from metaphase are inhibited from further cell cycle progression. After this initial delay all proliferative cells were inhibited in their progression through G2 but some recovered more quickly than others. The ratio of the time of division delay (Td) in stem cells to that in cells at the top of the proliferative compartment was about 3:1. In absolute values Td after 1.0 Gy was about 1 h and 2.8 h, for cells at the top of the crypt and at the base, respectively. After 2.5 Gy the corresponding values were less than 3 h and between 5 and 6 h for the mid-crypt and crypt base respectively. There is thus a dependence on dose for the duration of the mitotic inhibition which for the cells at the top of the crypt is similar to the widely quoted average value 1 h per Gy, but the duration depends strongly on cell position. Thus not all proliferative cells respond in the same way. The duration is shorter the closer the proliferative cells are to their last cell division in the proliferative hierarchy in the crypt and longest for cells situated where the stem cells are to be expected.  相似文献   

17.
The radiosensitivity of spermatogonial stem cells of C3H/HeH × 101/H F1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIIIirr, during quiescence, the spermatogonial stem cells were most radiosensitive with a D0 of 1.4 Gy. In stages XIirr−Virr, when the cells were proliferatively active, the D0 was about 2.6 Gy. Based on the D0 values for sensitive and resistant spermatogonia and on the D0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing.

When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y = eτD, with τ = 1 for the sensitive and τ = 0.1 for the resistant spermatogonial stem cells, with a maximal eτD of 100.  相似文献   


18.
A portal venous injection of allogeneic donor cells is known to prolong the survival of subsequently transplanted allografts. In this study, we investigated the role of liver sinusoidal endothelial cells (LSECs) in immunosuppressive effects induced by a portal injection of allogeneic cells on T cells with indirect allospecificity. To eliminate the direct CD4+ T cell response, C57BL/6 (B6) MHC class II-deficient C2tatm1Ccum (C2D) mice were used as donors. After portal injection of irradiated B6 C2D splenocytes into BALB/c mice, the host LSECs that endocytosed the irradiated allogeneic splenocytes showed enhanced expression of MHC class II molecules, CD80, and Fas ligand (FasL). Due to transmigration across the LSECs from BALB/c mice treated with a portal injection of B6 C2D splenocytes, the naive BALB/c CD4+ T cells lost their responsiveness to stimulus of BALB/c splenic APCs that endocytose donor-type B6 C2D alloantigens, while maintaining a normal response to stimulus of BALB/c splenic APCs that endocytose third-party C3H alloantigens. Similar results were not observed for naive BALB/c CD4+ T cells that transmigrated across the LSECs from BALB/c FasL-deficient mice treated with a portal injection of B6 C2D splenocytes. Adaptive transfer of BALB/c LSECs that had endocytosed B6 C2D splenocytes into BALB/c mice via the portal vein prolonged the survival of subsequently transplanted B6 C2D hearts; however, a similar effect was not observed for BALB/c FasL-deficient LSECs. These findings indicate that LSECs that had endocytosed allogeneic splenocytes have immunosuppressive effects on T cells with indirect allospecificity, at least partially via the Fas/FasL pathway.  相似文献   

19.
Exogenous prostaglandins (PGs) have been shown to protect gastrointestinal mucosa, liver, and pancreas from several injurious agents, including the PG inhibitor, indomethacin. Previous studies from this laboratory showed exogenous administration of 16,16-dimethyl (dm) PGE2 also protected mouse intestinal stem cells from radiation injury. The present study extended that observation and demonstrated that PGs given to B6D2F1 mice 1 hr before irradiation increased the shoulder of the intestinal clonogenic cell survival curve. The D0 increased from 1.10 + 0.09 to 1.58 + 0.10 Gy. PGs increased the LD50/6 from 16.3 + 0.41 (95% confidence limits) in controls to 20.25 + 0.55 Gy. The 16,16-dm PGE2 increased the hematopoietic CFU-S survival in a qualitatively similar way; the extrapolation number (n) was increased from 1.03 (0.89-1.20) to 1.40 (1.27-1.54) and the D0 increased from 0.92 (0.87-0.98) to 1.14 (1.10-1.19) Gy. A large number of human tumors secrete a variety of PGs. Our results suggest that those tumors may be, in part, protected from radiation injury.  相似文献   

20.
The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号