首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.  相似文献   

2.
5S rRNA sequences were determined for the myxobacteria Cystobacter fuscus, Myxococcus coralloides, Sorangium cellulosum, and Nannocystis exedens and for the radioresistant bacteria Deinococcus radiodurans and Deinococcus radiophilus. A dendrogram was constructed by using weighted pairwise grouping based on these and all other previously known eubacterial 5S rRNA sequences, and this dendrogram showed differences as well as similarities compared with results derived from 16S rRNA analyses. In the dendrogram, Deinococcus 5S rRNA sequences clustered with 5S rRNA sequences of the genus Thermus, as suggested by the results of 16S rRNA analyses. However, in contrast to the 16S rRNA results, the Deinococcus-Thermus cluster divided the 5S rRNA sequences of the alpha subdivision of the class Proteobacteria from the 5S rRNA sequences of the beta and gamma subgroups of the Proteobacteria. The myxobacterial 5S rRNA sequence data failed to confirm the existence of a delta subgroup of the class Proteobacteria, which was suggested by the results of 16S rRNA analyses.  相似文献   

3.
The aim of this work was to isolate, identify and type carbofuran-degrading bacteria from two geographically distant soils. Restriction Fragment Length Polymorphism (RFLP) patterns of the 16S rRNA gene and partial 16S rRNA sequence analysis were used to classify the 23 isolates obtained. Nine of them showed high similarity to Pseudomonas strains, seven showed similarity to the Flexibacter/Cytophaga/Bacteroides group and the remainder showed similarity to other bacterial genera. Isolates within the same group were sub-typed by comparing partial 16S rRNA sequences and SDS-PAGE analysis of their total protein profiles. Many of the UK isolates showed similarity to the Pseudomonas genera, while most of the Greek isolates showed similarity to the Flexibacter/Cytophaga/Bacteroides group. Only two Chrysobacterium strains isolated from both the UK and Greek soils were identical.  相似文献   

4.
Temporal changes of the bacterioplankton from a meromictic lake (Lake Vilar, Banyoles, Spain) were analyzed with four culture-independent techniques: epifluorescence microscopy, PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, fluorescence in situ whole-cell hybridization and flow cytometry sorting. Microscopically, blooms of one cyanobacterium (Synechococcus sp.-like), one green sulfur bacterium (Chlorobium phaeobacteroides-like), and one purple sulfur bacterium (Thiocystis minor-like) were observed at different depths and times. DGGE retrieved these populations and, additionally, populations related to the Cytophaga-Flavobacterium-Bacteroides phylum as predominant community members. The analyses of partial 16S ribosomal DNA sequences from the DGGE fingerprints (550 bp analyzed) revealed higher genetic diversity than expected from microscopic observation for most of these groups. Thus, the sequences of two Synechococcus spp. (both had a similarity of 97% to Synechococcus sp. strain PCC6307 in 16S rRNA), two Thiocystis spp. (similarities to Thiocystis minor of 93 and 94%, respectively), and three Cytophaga spp. (similarities to Cytophaga fermentans of 88 and 89% and to Cytophaga sp. of 93%, respectively) were obtained. The two populations of Synechococcus exhibited different pigment compositions and temporal distributions and their 16S rRNA sequences were 97.3% similar. The two Thiocystis populations differed neither in pigment composition nor in morphology, but their 16S rRNA sequences were only 92.3% similar and they also showed different distributions over time. Finally, two of the Cytophaga spp. showed 96.2% similarity between the 16S rRNA sequences, but one of them was found to be mostly attached to particles and only in winter. Thus, the identity of the main populations changed over time, but the function of the microbial guilds was maintained. Our data showed that temporal shifts in the identity of the predominant population is a new explanation for the environmental 16S rRNA microdiversity retrieved from microbial assemblages and support the hypothesis that clusters of closely related 16S rRNA environmental sequences may actually represent numerous closely related, yet ecologically distinct, populations.  相似文献   

5.
The phylogeny of green sulfur bacteria was studied on the basis of gene sequences of the 16S rRNA and of the Fenna-Matthews-Olson (FMO) protein. Representative and type strains (31 strains total) of most of the known species were analyzed. On the basis of fmoA gene sequences from Chlorobium tepidum ATCC 49652(T) and Chlorobium limicola DSM 249(T) available from the EMBL database, primers were constructed that allowed sequence analysis of a major part of the fmoAgene. The largely congruent phylogenetic relationship of sequences of the fmoA gene and of 16S rDNA gives considerable support to the phylogeny of green sulfur bacteria previously suggested on the basis of 16S rDNA sequences. Distinct groups of strains were recognized on the basis of 16S rDNA and FMO sequences and supported by characteristic signature amino acids of FMO. Marine strains formed clusters separate from freshwater strains. The resulting phylogenetic grouping and relationship of the green sulfur bacteria do not correlate with their current taxonomic classification.  相似文献   

6.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the beta- and gamma-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

7.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

8.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

9.
Several phototrophic sulfur bacteria were identified preliminarily through the analysis of the low-molecular-weight RNA fraction (lmwRNA) of bacterial cells. This fraction includes the ribosomal 5S RNA and several transfer RNAs. These molecules were separated by high-resolution electrophoresis in polyacrylamide gels, and the resulting band patterns were used as fingerprints for the identification of the organisms. We examined a large number of well-characterized reference strains together with a broad range of purple sulfur bacterial isolates from freshwater and marine environments. A cluster analysis was run using the similarity matrix calculated from the band patterns. Despite the shortcomings of the method, close relatives were clustered together yielding a number of groups consistent with the phylogenetic arrangement established through the analyses of a few available 16S rRNA gene sequences. Thus, the classification obtained gives further support to rearrangement of the group as the analyses of 16S rRNA gene sequences had previously suggested. We conclude that the analysis of lmwRNA band patterns is a rapid and simple tool for grouping and preliminarily identifying new isolates of phototrophic sulfur bacteria. Received: 5 February 1998 / Accepted: 15 June 1998  相似文献   

10.
AIMS: To identify Bacillus species and related genera by fingerprinting based on ribosomal RNA gene restriction patterns; to compare ribosomal RNA gene restriction patterns-based phylogenetic trees with trees based on 16S rRNA gene sequences; to evaluate the usefulness of ribosomal RNA gene restriction patterns as a taxonomic tool for the classification of Bacillus species and related genera. METHODS AND RESULTS: Seventy-eight bacterial species which include 42 Bacillus species, 31 species from five newly created Bacillus-related genera, and five species from five phenotypically related genera were tested. A total of 77 distinct 16S rRNA gene hybridization banding patterns were obtained. The dendrogram resulting from UPGMA analysis showed three distinct main genetic clusters at the 75% banding pattern similarity. A total of 77 distinct 23S and 5S rRNA genes hybridization banding patterns were obtained, and the dendrogram showed four distinct genetic clusters at the 75% banding pattern similarity. A third dendrogram was constructed using a combination of the data from the 16S rRNA gene fingerprinting and the 23S and 5S rRNA genes fingerprinting. It revealed three distinct main phylogenetic clusters at the 75% banding pattern similarity. CONCLUSIONS: The Bacillus species along with the species from related genera were identified successfully and differentiated by ribosomal RNA gene restriction patterns, and most were distributed with no apparent order in various clusters on each of the three dendrograms. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data indicate that ribosomal RNA gene restriction patterns can be used to reconstruct the phylogeny of the Bacillus species and derived-genera that approximates, but does not duplicate, phylogenies based on 16S rRNA gene sequences.  相似文献   

11.
The genes encoding the beta-subunits of ATP-synthases (ATPases) from Bacteroides fragilis DSM 2151, Cytophaga lytica DSM 2039 and 'Taxeobacter ocellatus' were cloned. The nucleotide sequences were determined completely for the genes of the first two organisms and to a major part for that of 'T. ocellatus'. The predicted amino acid sequences were compared with previously published amino acid sequences of beta-subunits. Two characteristic insertions were found in genes from organisms belonging to the so-called bacteroides-cytophaga-flavo-bacterium group. The remaining structure shows a high degree of sequence similarity within this group. These data support the conclusions drawn from comparative 16S rRNA sequence analyses that organisms in this phenotypically heterogeneous group are phylogenetically related. A phylogenetic tree was constructed based on a distance matrix of optimally aligned amino acid sequences of beta-subunits of ATPases of various eubacteria, chloroplasts and mitochondria. It is in good agreement with a tree derived from 16S rRNA sequence analyses.  相似文献   

12.
Five representatives of the order Myxobacterales were characterized by oligonucleotide cataloguing of their 16S ribosomal RNA to determine their phylogenetic relationship to one another and to other gliding and non-gliding Gram-negative bacteria. Myxococcus fulvus, Stigmatella aurantiaca and Cystobacter fuscus are highly related, while Sorangium cellulosum and Nannocystis exedens are clearly separated from each other and from the former organisms. All myxobacteria are members of one line of descent, which is specifically related to the broad groups of non-sulphur and sulphur purple bacteria and their non-phototrophic relatives. Myxobacteria are distantly related to Cytophaga johnsonae, which stands completely isolated at present.  相似文献   

13.
Thlaspi goesingense is able to hyperaccumulate extremely high concentrations of Ni when grown in ultramafic soils. Recently it has been shown that rhizosphere bacteria may increase the heavy metal concentrations in hyperaccumulator plants significantly, whereas the role of endophytes has not been investigated yet. In this study the rhizosphere and shoot-associated (endophytic) bacteria colonizing T. goesingense were characterized in detail by using both cultivation and cultivation-independent techniques. Bacteria were identified by 16S rRNA sequence analysis, and isolates were further characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-Ni tolerance, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and siderophore production. In the rhizosphere a high percentage of bacteria belonging to the Holophaga/Acidobacterium division and alpha-Proteobacteria were found. In addition, high-G+C gram-positive bacteria, Verrucomicrobia, and microbes of the Cytophaga/Flexibacter/Bacteroides division colonized the rhizosphere. The community structure of shoot-associated bacteria was highly different. The majority of clones affiliated with the Proteobacteria, but also bacteria belonging to the Cytophaga/Flexibacter/Bacteroides division, the Holophaga/Acidobacterium division, and the low-G+C gram-positive bacteria, were frequently found. A high number of highly related Sphingomonas 16S rRNA gene sequences were detected, which were also obtained by the cultivation of endophytes. Rhizosphere isolates belonged mainly to the genera Methylobacterium, Rhodococcus, and Okibacterium, whereas the majority of endophytes showed high levels of similarity to Methylobacterium mesophilicum. Additionally, Sphingomonas spp. were abundant. Isolates were resistant to Ni concentrations between 5 and 12 mM; however, endophytes generally tolerated higher Ni levels than rhizosphere bacteria. Almost all bacteria were able to produce siderophores. Various strains, particularly endophytes, were able to grow on ACC as the sole nitrogen source.  相似文献   

14.
Analysis of 16S rRNA sequences retrieved as cDNA (16S rcDNA) from the Octopus Spring cyanobacterial mat has permitted phylogenetic characterization of some uncultivated community members, expanding our knowledge or diversity within this microbial community. Two new cyanobacterial 16S rRNA sequences were discovered, raising to four the number of cyanobacterial sequence types known to occur in the mat. None of the sequences found is that of the cultivated thermophilic cyanobacterium Synechococcus lividus. A new 16S rRNA sequence characteristic of green nonsulfur bacteria and their relatives was discovered, raising to two the number of such sequences known to exist in the mat. Both are unique among the 16S rRNA sequences of cultivated members of this group, including an Octopus Spring isolate of Chloroflexus aurantiacus and Heliothrix oregonensis, whose sequences we report herein. Two spirochete-like 16S rRNA sequences were discovered. One can be placed in the leptospira subdivision of the spirochete group, but the other has such a loose affiliation with the spirochete group that it might actually belong to an as yet unrecognized subdivision or even to a new eubacterial line of descent.  相似文献   

15.
Analysis of 16S rRNA sequences retrieved as cDNA (16S rcDNA) from the Octopus Spring cyanobacterial mat has permitted phylogenetic characterization of some uncultivated community members, expanding our knowledge or diversity within this microbial community. Two new cyanobacterial 16S rRNA sequences were discovered, raising to four the number of cyanobacterial sequence types known to occur in the mat. None of the sequences found is that of the cultivated thermophilic cyanobacterium Synechococcus lividus. A new 16S rRNA sequence characteristic of green nonsulfur bacteria and their relatives was discovered, raising to two the number of such sequences known to exist in the mat. Both are unique among the 16S rRNA sequences of cultivated members of this group, including an Octopus Spring isolate of Chloroflexus aurantiacus and Heliothrix oregonensis, whose sequences we report herein. Two spirochete-like 16S rRNA sequences were discovered. One can be placed in the leptospira subdivision of the spirochete group, but the other has such a loose affiliation with the spirochete group that it might actually belong to an as yet unrecognized subdivision or even to a new eubacterial line of descent.  相似文献   

16.
The nearly complete 16S rRNA gene sequences for oral Gram-negative anaerobic motile bacteria, Centipeda periodontii, Selenomonas sputigena and Selenomonas species (formerly S. sputigena type strain), were determined in order to unveil their relationship to other oral motile bacteria. To determine the phylogenetic characterization of these bacteria, their 16S rRNA gene sequences were obtained and compared with those from the ribosomal sequence databases previously reported. The 16S rRNA gene sequences of these bacteria were similar to those of Selenomonas ruminantium and Schwartzia succinivorans isolated from rumens, and to Pectinatus cerevisiiphilus isolated from spoiled beer. Among oral bacteria, the nucleotide sequence analysis of these bacteria revealed high nucleotide similarity to Veillonella species, whereas low similarity to oral motile bacteria such as Campylobacter species. Phylogenetic analysis clearly confirmed that C. periodontii and two Selenomonas species were classified as relatives of a group besides Selenomonas, Schwartzia, and Pectinatus species, and not as close relatives to oral motile bacteria, such as Campylobacter species. These results suggest that such oral Gram-negative anaerobic motile bacteria are close relatives of oral bacteria.  相似文献   

17.
The 70-kDa heat shock protein (hsp70) sequences define one of the most conserved proteins known to date. The hsp70 genes from Deinococcus proteolyticus and Thermomicrobium roseum, which were chosen as representatives of two of the most deeply branching divisions in the 16S rRNA trees, were cloned and sequenced. hsp70 from both these species as well as Thermus aquaticus contained a large insert in the N-terminal quadrant, which has been observed before as a unique characteristic of gram-negative eubacteria and eukaryotes and is not found in any gram-positive bacteria or archaebacteria. Phylogenetic analysis of hsp70 sequences shows that all of the gram-negative eubacterial species examined to date (which includes members from the genera Deinococcus and Thermus, green nonsulfur bacteria, cyanobacteria, chlamydiae, spirochetes, and alpha-, beta-, and gamma-subdivisions of proteobacteria) form a monophyletic group (excluding eukaryotic homologs which are derived from this group via endosybitic means) strongly supported by the bootstrap scores. A closer affinity of the Deinococcus and Thermus species to the cyanobacteria than to the other available gram-negative sequences is also observed in the present work. In the hsp7O trees, D. proteolyticus and T. aquaticus were found to be the most deeply branching species within the gram-negative eubacteria. The hsp70 homologs from gram-positive bacteria branched separately from gram-negative bacteria and exhibited a closer relationship to and shared sequence signatures with the archaebacteria. A polyphyletic branching of archaebacteria within gram-positive bacteria is strongly favored by different phylogenetic methods. These observations differ from the rRNA-based phylogenies where both gram-negative and gram-positive species are indicated to be polyphyletic. While it remains unclear whether parts of the genome may have variant evolutionary histories, these results call into question the general validity of the currently favored three-domain dogma.  相似文献   

18.
Summary The primary structure of 5S ribosomal RNA has been determined in five species belonging to the genusMycobacterium and inMicrococcus luteus. The sequences of 5S RNAs from Actinomycetes and relatives point to the existence in this taxon of a bulge on the helix that joins the termini of the molecule. An attempt was made to reconstruct bacterial evolution from a sequence dissimilarity matrix based on 142 eubacterial 5S RNA sequences and corrected for multiple mutation. The algorithm is based on weighted pairwise clustering, and incorporates a correction for divergent mutation rates, as derived by comparison of sequence dissimilarities with an external reference group of eukaryotic 5S RNAs. The resulting tree is compared with the eubacterial phylogeny built on 16S rRNA catalog comparison. The bacteria for which the 5S RNA sequence is known form a number of clusters also discernible in the 16S rRNA phylogeny. However, the branching pattern leading to these clusters shows some notable discrepancies with the aforementioned phylogeny.  相似文献   

19.
A 16S rDNA-based molecular study was performed to determine the nature of the bacterial constituents of the leachate from a closed municipal solid waste landfill. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified and cloned. Recombinant rDNA clones in the library were randomly selected, and they were sequenced for a single run and then grouped. A total of 76 sequence types representing 138 randomly selected nonchimeric clones were identified. Full-length sequencing and phylogenetic analysis of the sequence types revealed that more than 90% of the screened clones were affiliated with low-G+C gram-positive bacteria (38.4%), Proteobacteria (35.5%), the Cytophaga Flexibacter Bacteroides group (11.6%), and Spirochaetes (5.1%). Minor portions were affiliated with Verrucomicrobia (2.9%), candidate division OP11 (2.2%), and the green nonsulfur bacteria, Cyanobacteria and the Deinococcus Thermus group (each <1.0%). Although some rDNA sequences clustered with genera or taxa that were classically identified within anaerobic treatment systems and expected with known functions, a substantial fraction of the clone sequences showed relatively low levels of similarity with any other reported rDNA sequences and thus were derived from unknown taxa. These results suggest that bacterial communities in landfill environment are far more complex than previously expected and remain largely unexplored.  相似文献   

20.
Five gram-negative bacteria, all of which were Enterobacteriaceae, were isolated from the phyllosphere of green or senescing leaves of Rosa rugosa, and their phenotypic and physiological characteristics were examined. Partial 16S rDNA sequences led to identification of these isolates as Pantoea agglomerans, Klebsiella terrigena, Erwinia rhapontici, and two strains of Rahnella aquatilis. Interestingly, these phyllosphere bacteria had certain phenotypic and physiological convergences, while they showed their own metabolic properties toward phenolic compounds of plant origin. In particular, the two Ra. aquatilis isolates from the green leaves had a substrate-inducible gallate decarboxylase activity in the resting cells that had been cultured in 1 mM gallic acid- or protocatechuic acid-containing medium. The other three isolates from the senescing leaves did not have this enzyme activity. Simple phenolics that the Ra. aquatilis decarboxylatively produced from benzoic acid derivatives had better antimicrobial activities than those of the substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号