首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Positive autoregulation of the glial promoting factor glide/gcm.   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

3.
Locomotion relies on stable attachment of muscle fibres to their target sites, a process that allows for muscle contraction to generate movement. Here, we show that glide/gcm and glide2/gcm2, the fly glial cell determinants, are expressed in a subpopulation of embryonic tendon cells and required for their terminal differentiation. By using loss-of-function approaches, we show that in the absence of both genes, muscle attachment to tendon cells is altered, even though the molecular cascade induced by stripe, the tendon cell determinant, is normal. Moreover, we show that glide/gcm activates a new tendon cell gene independently of stripe. Finally, we show that segment polarity genes control the epidermal expression of glide/gcm and determine, within the segment, whether it induces glial or tendon cell-specific markers. Thus, under the control of positional cues, glide/gcm triggers a new molecular pathway involved in terminal tendon cell differentiation, which allows the establishment of functional muscle attachment sites and locomotion.  相似文献   

4.
5.
6.
7.
Asymmetric cell divisions and segregation of fate determinants are crucial events in the generation of cell diversity. Fly neuroblasts, the precursors that self-reproduce and generate neurons, represent a clear example of asymmetrically dividing cells. Less is known about how neurons and glial cells are generated by multipotent precursors. Flies provide the ideal model system to study this process. Indeed, neuroglioblasts (NGBs) can be specifically identified and have been shown to require the glide/gcm fate determinant to produce glial cells, which otherwise would become neurons. Here, we follow the division of a specific NGB (NGB6-4T), which produces a neuroblast (NB) and a glioblast (GB). We show that, to generate the glioblast, glide/gcm RNA becomes progressively unequally distributed during NGB division and preferentially segregates. Subsequently, a GB-specific factor is required to maintain glide/gcm expression. Both processes are necessary for gliogenesis, showing that the glial vs. neuronal fate choice is a two-step process. This feature, together with glide/gcm subcellular RNA distribution and the behavior of the NGB mitotic apparatus identify a novel type of division generating cell diversity.  相似文献   

8.
9.
10.
11.
12.
glial cells missing (gcm) is the primary regulator of glial cell fate in Drosophila. In addition, gcm has a role in the differentiation of the plasmatocyte/macrophage lineage of hemocytes. Since mutation of gcm causes only a decrease in plasmatocyte numbers without changing their ability to convert into macrophages, gcm cannot be the sole determinant of plasmatocyte/macrophage differentiation. We have characterized a gcm homolog, gcm2. gcm2 is expressed at low levels in glial cells and hemocyte precursors. We show that gcm2 has redundant functions with gcm and has a minor role promoting glial cell differentiation. More significant, like gcm, mutation of gcm2 leads to reduced plasmatocyte numbers. A deletion removing both genes has allowed us to clarify the role of these redundant genes in plasmatocyte development. Animals deficient for both gcm and gcm2 fail to express the macrophage receptor Croquemort. Plasmatocytes are reduced in number, but still express the early marker Peroxidasin. These Peroxidasin-expressing hemocytes fail to migrate to their normal locations and do not complete their conversion into macrophages. Our results suggest that both gcm and gcm2 are required together for the proliferation of plasmatocyte precursors, the expression of Croquemort protein, and the ability of plasmatocytes to convert into macrophages.  相似文献   

13.
During Drosophila neurogenesis, glial differentiation depends on the expression of glial cells missing (gcm). Understanding how glial fate is achieved thus requires knowledge of the temporal and spatial control mechanisms directing gcm expression. A recent report showed that in the adult bristle lineage, gcm expression is negatively regulated by Notch signaling ( Van De Bor, V. and Giangrande, A. (2001). Development 128, 1381-1390). Here we show that the effect of Notch activation on gliogenesis is context-dependent. In the dorsal bipolar dendritic (dbd) sensory lineage in the embryonic peripheral nervous system (PNS), asymmetric cell division of the dbd precursor produces a neuron and a glial cell, where gcm expression is activated in the glial daughter. Within the dbd lineage, Notch is specifically activated in one of the daughter cells and is required for gcm expression and a glial fate. Thus Notch activity has opposite consequences on gcm expression in two PNS lineages. Ectopic Notch activation can direct gliogenesis in a subset of embryonic PNS lineages, suggesting that Notch-dependent gliogenesis is supported in certain developmental contexts. We present evidence that POU-domain protein Nubbin/PDM-1 is one of the factors that provide such context.  相似文献   

14.
Neurons and glial cells differentiate from common precursors. Whereas the gene glial cells missing (gcm) determines the glial fate in Drosophila, current data about the expression patterns suggest that, in mammals, gcm homologues are unlikely to regulate gliogenesis. Here, we found that, in mouse retina, the bHLH gene Hes5 was specifically expressed by differentiating Müller glial cells and that misexpression of Hes5 with recombinant retrovirus significantly increased the population of glial cells at the expense of neurons. Conversely, Hes5-deficient retina showed 30-40% decrease of Müller glial cell number without affecting cell survival. These results indicate that Hes5 modulates glial cell fate specification in mouse retina.  相似文献   

15.
Glial differentiation and the Gcm pathway   总被引:1,自引:0,他引:1  
One of the most challenging issues in developmental biology is to understand how cell diversity is generated. The Drosophila nervous system provides a model of choice for unraveling this process. First, many neural stem cells and lineages have been identified. Second, major molecular pathways involved in neural development and associated mutations have been characterized extensively in recent years. In this review, we focus on the cellular and molecular mechanisms underlying the generation of glia. This cell population relies on the expression of gcm fate determinant, which is necessary and sufficient to induce glial differentiation. We also discuss the recently identified role of gcm genes in Drosophila melanogaster and vertebrate neurogenesis. Finally, we will consider the Gcm pathway in the context of neural stem cell differentiation.  相似文献   

16.
17.
The Drosophila visual system consists of the compound eyes and the optic ganglia in the brain. Among the eight photoreceptor (R) neurons, axons from the R1-R6 neurons stop between two layers of glial cells in the lamina, the most superficial ganglion in the optic lobe. Although it has been suggested that the lamina glia serve as intermediate targets of R axons, little is known about the mechanisms by which these cells develop. We show that DPP signaling plays a key role in this process. dpp is expressed at the margin of the lamina target region, where glial precursors reside. The generation of clones mutant for Medea, the DPP signal transducer, or inhibition of DPP signaling in this region resulted in defects in R neuron projection patterns and in the lamina morphology, which was caused by defects in the differentiation of the lamina glial cells. glial cells missing/glial cells deficient (gcm; also known as glide) is expressed shortly after glia precursors start to differentiate and migrate. Its expression depends on DPP; gcm is reduced or absent in dpp mutants or Medea clones, and ectopic activation of DPP signaling induces ectopic expression of gcm and REPO. In addition, R axon projections and lamina glia development were impaired by the expression of a dominant-negative form of gcm, suggesting that gcm indeed controls the differentiation of lamina glial cells. These results suggest that DPP signaling mediates the maturation of the lamina glia required for the correct R axon projection pattern by controlling the expression of gcm.  相似文献   

18.
19.
20.
《Developmental biology》1997,191(1):118-130
Glial cell differentiation inDrosophila melanogasterrequires the activity ofglide/gcm(glial cell deficient/glial cell missing). The role of this gene is to direct the cell fate switch between neurons and glial cells by activating the glial developmental program in multipotent precursor cells of the nervous system. In this paper, we show thatglide/gcmis also expressed and required in the lineage of hemocytes/macrophages, scavenger cells that phagocytose cells undergoing programmed cell death. In addition, we show that, as for glial cells,glide/gcmplays an instructive role in hemocyte differentiation. Interestingly, it has been shown that in the development of the fly adult nervous system the role of scavenger cells is played by glial cells. These data and our findings on the dual role ofglide/gcmindicate that glial cells and hemocytes/macrophages are functionally and molecularly related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号