首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells that were mechanically dissociated from the brains of 7-day-old chick embryos were grown in culture for 7–8 days. Two major cell populations were observed: (1) cells that aggregated and sent out processes, (2) flat cells that proliferated rapidly and formed a confluent layer by day 4 of culture. Many of the cells of the first type had the morphological, histochemical and biochemical attributes of neurons. They possessed choline acetyltransferase (ChAc) and acetylcholinesterase (AChEs) activities. The flat cells possessed neither of the activities, but did have butyrylcholinesterase (BuChEs) activity and a choline independent acetylase activity (CIA) that may be carnitine acetyltransferase.The activities of ChAc and AChEs in the cultured neurons increased approximately 9-fold and 5-fold, respectively, over an 8-day period. The patterns of change of these enzymes were not unlike those seen in vivo in intact developing chick brain.The addition of thyroxine (10?6M) to these cultures increased the activities of neuronal AChEs and flat cell BuChEs by 30–70%.  相似文献   

2.
Abstract— Microsomal, mitochondrial, synaptosomal and synaptic vesicle fractions of rat brain took up [3H-methyl]choline by a similar carrier-mediated transport system. The apparent Km for the uptake of [3H-methyl]choline in these subcellular fractions was about 5 × 10?5 M. Choline uptake was also observed in microsomal fractions prepared from liver and skeletal muscle. Virtually identical kinetic properties for [3H-methyl]choline transport were found in the synaptosomal fractions prepared from the whole brain, cerebellum or basal ganglia. Countertransport of [3H-methyl]choline from the synaptosomal fraction was demonstrated against a concentration gradient. HC-3 was a competitive inhibitor of the uptake of [3H-methyl]choline in brain microsomal, synaptosomal and mitochondria] fractions with respective values for Ki of 4.0, 2.1 and 2.3 × 10?5 M. HC-15 was a competitive inhibitor of the transport of [3H-methyl]choline in the synaptosomal fraction, with a Ki of 1.7 × 10?4 M. Upon entry into the microsomal fraction, 74 per cent of the radioactivity could be recovered as unaltered choline, 10 per cent as phosphorylcholine, 1.5 per cent as acetylcholine and 2.5 per cent as phospholipid. Choline acetyltransferase (EC 2.3.1.6) was assayed with [14C]acetylCoA in synaptosomal fractions prepared from basal ganglia and cerebellum, and in the 31,000 g supernatant fraction of a rat brain homogenate. Enzyme activity was 11-fold greater in the synaptosomal fraction from the basal ganglia than in that from the cerebellum. HC-3 did not inhibit choline acetyltransferase and there was no evidence for acetylation of HC-3. Our findings suggest that choline uptake is a ubiquitous property of membranes in the CNS and cannot serve to distinguish cholinergic nerve endings and their synaptic vesicles.  相似文献   

3.
Differential assay for choline acetyltransferase   总被引:7,自引:0,他引:7  
A rapid and sensitive radiochemical assay for choline acetyltransferase (EC 2.3.1.6) is reported. The assay allows for the fact that during incubation of [14C]acetyl-CoA and choline with a cell homogenate, at least one product is formed besides [14C]acetylcholine, which passes an anion exchange column. In contrast to [14C]acetylcholine, this major contaminant ([14C]acetylcarnitine) is not hydrolyzed apparently by Electrophorus acetylcholinesterase. Therefore, two types of assays are performed, the one in the presence of an acetylcholinesterase inhibitor, the other in the presence of acetylcholinesterase from Electrophorus. After passing the reaction mixtures over anion exchange columns, the radioactivities of the effluents are determined. Their difference is proportional to the choline acetyltransferase activity.  相似文献   

4.
Abstract— Acetylcholine, choline and choline acetyltransferase activity were measured in the whole brains of normal and hypothyroid rats during development. At 1 day postpartum, brain acetylcholine was 73 per cent of adult levels. Propylthiouracil-induced hypothyroidism up to age 20 days did not alter brain acetylcholine concentrations, but at 30 days resulted in significantly decreased levels. At day 1, brain choline was 20 per cent higher than adult levels and decreased between days 8 and 10. In hypothyroid rats this phenomenon did not occur until days 15–20. At day 1 postnatally, choline acetyltransferase activity was only 7 per cent of adult levels, then between days 5 and 20 rose to 77 per cent of adult levels. Beginning at day 8, hypothyroidism resulted in significantly decreased enzyme levels. This effect could be reversed at day 17 by concurrent tri-iodothyronine substitution therapy. In hypothyroid rats, maximum brain choline acetyltransferase activity was 30 per cent less than normal adult levels.  相似文献   

5.
Summary Newborn BALB/c mouse brain was cultured as disaggregated cells after serial trypsin dissociations. The ontogeny of the cultures was followed by assays of cell number, deoxyribonucleic acid, and protein content and by the activities of three enzymes considered to be markers of neuronal differentiation. Aliquots of the freshly dissociated cells were assayed for choline acetylase, acetylcholinesterase, and glutamic acid decarboxylase activities and compared with intact brain. The percentages of recovery of activities, expressed as14C product formed per mg of protein per 10 min, at pH 6.8 and 37°C, were 37% for choline acetylase, 54% for acetylcholinesterase, and 24% for glutamic acid decarboxylase. The remainder of the freshly dissociated cells were placed into culture; enzyme assays were performed as the cells multiplied and then when the cultures became static. Choline acetylase activity increased as the cells rapidly divided, and glutamic acid decarboxylase activity increased only after the cultures became confluent. Under the culture conditions, acetylcholinesterase was not induced, despite active synthesis of acetylcholine. Neuroblastoma clone N18, C1300 cell line, was grown in cell culture, and the activity of acetylcholinesterase was measured as the cells multiplied and came to confluency. The specific activity of mouse neuroblastoma acetylcholinesterase increased 25-fold when the rate of cell division was restricted. The rate of cell division could be regulated by adjusting the serum concentration. By removing fetal calf serum during the growth period, cell division ceased, and acetylcholinesterase activity was significantly and rapidly induced. Choline-O-acetyltransferase specific activity was measured in rapidly dividing and in static cultures. Its specific activity was highest in nondividing cultures, compared to cultures containing actively dividing cells (6-fold), and the specific activity of thymidylate synthetase was increased 2.5-fold in actively dividing cultures, compared to static cultures. Glioblastoma cells obtained from the rat astrocytoma, clone C6, were grown in culture, and glucose metabolism was measured in control cultures, and in cultures containing norepinephrine (0.017 mg per ml). Norepinephrine produced a 50% inhibition in the incorporation ofd-[14C]glucose. Cells incubated for 2 hr in the presence ofd-[14C]glucose, washed and then incubated in control medium or in medium containing norepinephrine, resulted in the release of greater than 50% of radioactive metabolites in the norepinephrine treated plates. Norepinephrine caused a 50% increase in14CO2 production in glioblastoma cells incubated withd-[1-14C]glucose. Norepinephrine, under similar conditions, did not affect the metabolism of glucose in clone C46, C1300 mouse neuroblastoma cells. Portions of this work were supported by a research grant (6-444946-58605) from the American Cancer Society.  相似文献   

6.
7.
The elements of the cholinergic system (acetylcholinesterase and choline acetyltransferase) and butyrylcholinesterase were studied in human cortical capillary samples, brain-derived endothelial cell cultures and glial cell cultures. It was shown that the elements of the cholinergic system are present in the microvessels, but the choline acetyltransferase activity may be due to contamination with cholinergic nerve terminals since no choline acetyltransferase could be demonstrated in endothelial cell cultures. The present results revealed that the activity of acetylcholinesterase is reduced in the cortical endothelial cell cultures after longer culture times, while butyrylcholinesterase activity is not altered. In a system where endothelial cells were cocultured with embryonic human brain astroglial cells for 12 days in vitro, the acetylcholinesterase activity was increased 2-fold. These results support a glial influence on the enzyme activity of the cerebral endothelium.  相似文献   

8.
The effect of hemicholinium-3 (HC-3) on choline uptake and phosphatidylcholine (PC) biosynthesis was examined in human leukemic monocyte-like U937 cells. HC-3 inhibited [3H]choline uptake in a dose- and time-dependent manner. After a 3 h treatment, HC-3 (100 μM) decreased choline uptake by as much as 80 per cent (p < 0·0001; n = 4). Reduction of incorporation of label into PC was also detected in a dose-dependent manner; the extent of inhibition, however, was always 10–20 per cent less than that observed in the total uptake. At 3 h HC-3 decreased the incorporation into PC by 65 per cent (p < 0·0001; n = 5). Kinetic studies in vivo showed that HC-3 inhibited total uptake and incorporation into PC differently, suggesting that the labelling of PC is not simply dictated by [3H]choline uptake. In separate experiments, cells were pretreated with 100 μM HC-3 for 3 h. After washing, the inhibitory effect on total uptake was no longer observed, while a 20 per cent stimulation of the incorporation into PC was obtained in these pretreated cells. In pulse-chase studies, the cells were prelabelled with [3H]choline for 30 min and chased with HC-3 for up to 3 h; the results showed a significant stimulation of incorporation into PC in a longer chase with 100 μM HC-3. After a 3 h treatment, the cytosolic CTP:cholinephosphate cytidylytransferase (CT) was activated by 56 per cent, while choline kinase (CK) was inhibited slightly. The stimulation of CT was not simply due to the intact HC-3 molecule, and there was no redistribution of CT between cytosol and microsomes. Taken together, the results suggest that HC-3 activates PC biosynthesis apart from the inhibitory effect on choline uptake.  相似文献   

9.
Twenty stages in the life cycle of Canton-S, a normal strain of Drosophila melanogaster, were investigated for protein content and the activities of choline acetyltransferase and acetylcholinesterase, enzymes associated with the metabolism of acetylcholine. The maximum protein content is reached at the prepupal stage. Specific activities of choline acetyltransferase and acetylcholinesterase were high in the larval stages and again in the mature fly. The activities of these enzymes expressed on a per fly basis were compared with the activities of other enzymes, previously published by other workers, expressed on the same basis. The developmental pattern of acetylcholinesterase and choline acetyltransferase differed from the patterns exhibited by the other enzymes described earlier. It was possible to relate the different enzyme patterns to known changes occurring in the life cycle of Drosophila melanogaster.Supported by grants from the National Multiple Sclerosis Society (347), and from the National Institutes of Health (FR 05471; NB 08864 and NB 08014).  相似文献   

10.
—The distribution of choline acetyltransferase, aromatic l -amino acid decarboxylase and acetylcholinesterase in the nervous system of Helix aspersa has been studied using homogenates of whole ganglia, microdissection from freeze-dried sections and dissection of single neurons from fresh tissue. Choline acetyltransferase was found in both the cell body and neuropil layers of all the Helix ganglia. The enzyme was not specifically localized to any ganglion or region of ganglion. Between 10 and 30 per cent of the isolated single cell bodies contained the enzyme. The enzymic activity corresponded to 50–200 mmol ACh/1 cell bodies/h. Choline acetyltransferase is probably a specific marker for cholinergic cells in this species. Aromatic l -amino acid decarboxylase was more selectivity localized and its distribution corresponded well with that of monoamine containing cells as visualized by the fluorescence histochemical technique. A large proportion of cell bodies were localized in the boundary between the visceral and right parietal ganglia and in the pedal ganglion. The other ganglia contained few such cells. The activity of aromatic l -amino acid decarboxylase corresponded 10–50 mmol dopamine/1 cell bodies/h. A method was developed to measure the enzyme activity towards 5-hydroxytryptophan and DOPA in single cells simultaneously. The ratio between the activity towards both substrates did not vary significantly for the different cells. The enzyme is probably a specific marker for monoamine cells, but cannot be used to differentiate between the different monoamine cells. Acetylcholinesterase was uniformly distributed in the ganglia and was probably present in all nerve cells.  相似文献   

11.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

12.
The effect of lidocaine on [3H]choline uptake and the incorporation of label into phosphatidylcholine (PC) in human monocyte-like U937 cells was investigated. Lidocaine inhibited the rate of choline uptake in a dose-dependent manner; at 3·2 mM it resulted in a drastic reduction, by as much as 65 per cent (n = 10; p < 0·0005) or 55 per cent (n = 10; p < 0·0006) in a 3- or 6-h incubation, respectively. Lidocaine also decreased the rate of choline incorporation into PC in a dose-dependent manner. At the highest dose, nearly 70 per cent or 45 per cent reduction was seen in a 3- or 6-h incubation, respectively. Analysis of choline-containing metabolites showed that the major label association with phosphocholine and PC was reduced to a similar extent which was also parallel to the inhibition of choline uptake. At 3·2 mM lidocaine, the reduction of choline uptake was shown to follow a competitive inhibition. In the case of [3H] choline incorporation into PC, the inhibitory pattern was shown to be of a mixed type. The pulse-chase study dissecting the effect on choline metabolism from that on total choline uptake indicated that lidocaine exerted an additionally inhibitory effect on intracellular choline metabolism into PC. In a separate protocol in which the labelled cells were first allowed to be chased until 3H-incorporation into PC reached a steady state, lidocaine no longer showed any effect. These results seem to exclude the possibility of enhanced PC breakdown and further suggest that the main inhibitory effect is on the CDP-choline pathway for PC biosynthesis. After a 3-h treatment, CTP: cholinephosphate cytidylyltransferase (CYT) in both the cytosolic and microsomal fractions was inhibited by approximately 20 per cent, while choline kinase (CK) and choline phosphotransferase (CPT) remain relatively unchanged. There was no evidence for translocation of CYT between cytosol and microsomes. Taken together, we have demonstrated a dual inhibitory function of lidocaine which inhibits PC biosynthesis in addition to its ability to block choline uptake profoundly in U937 cells.  相似文献   

13.
Abstract— The question of a constant density of glial cells in mammalian cerebral cortex regardless of species was examined by surveying the cortical activities of two enzymes primarily localized to dial cells. The cortical activity of butyrylcholinesterase (EC 3.1.1.8) was essentially constant at a rate of approx. 0.1 μmol of butyrylthiocholine hydrolysed min-1 g-1 over the range of species from rat (brain wt., 1.6 g) to fin whale and sperm whale (brain wt., 6800 and 7800 g, respectively). Over the same range the activity of cortical acetylcholinesterase, a neuronal enzyme, decreases by a factor of 7. Thus, butyrylcholinesterase ranged from < 2 per cent (in small rodent brains) to approximately 10 per cent (in whale brain) of the cortical acetylcholinesterase activity. The cortical activity of carbonic anhydrase (EC 4.2.1.1) was constant at a rate of 6.2 (± 0.25) μmol of CO2 evolved min-1 g-1 over the range of species from guinea-pig (brain wt., 4.75 g) to fin whale (brain wt., 6800 g). These data obtained by assaying the dehydration reaction were confirmed by limited assays of the esterase activity of the enzyme (with p-nitrophenylacetate as substrate) and agreed with limited, previously reported data for the hydration reaction. Thus, the circumstantial evidence strongly favoured a relative constancy of cortical glial cell density regardless of species. The rates of anaerobic glycolysis in the cerebral cortex of various species were also investigated. For six species from mouse (brain wt., 0.4 g) to beef (brain wt., 380 g) cortical anaerobic glycolysis varied only slightly in the range of 50–62 μmol of CO2 evolved h-1 g-l, whereas cortical oxygen consumption for the same range of species decreased by a factor of 3. Previously frozen samples of beef cortex glycolysed at 35 per Cent of the rate of fresh (unfrozen) samples. Since identical rates were obtained for previously frozen samples of fin whale cerebral cortex, we concluded that the relative constancy of cortical anaerobic glycolysis could be extended to the range from mouse to whale and that this aspect of cortical metabolism is probably primarily glial in localization. Some implications of the latter conclusion for the proposed role of astrocytes as modulators of neuronal activity have been discussed.  相似文献   

14.
Brain extracts from 8-day-old chick embryos have been shown to influence morphological development of dissociated brain cells from 7-day-old chick embryos in culture. Stimulatory, effects on size of the neuronal somas and on growth of long processes were observed by adding the cytosol of the brain extract or the dialysate of the cytosol. These morphological changes parallel modifications of various enzyme activities according to the age of the cultures. Adenyl cyclase, (Na+, K+)- and Mg2+-ATPase, 5-nucleotidase, choline acetyltransferase, and acetylcholinesterase activities were studied between 5 and 14 days of culture. Adenyl cyclase activity was strongly stimulated at 8 days by both extracts. (Na+, K+)-and Mg2+-ATPase activities were stimulated in 8-day-old cultures only by the dialysate. 5-Nucleotidase activity was stimulated in 8-day-old cultures by the dialysate and in 11-day-old cultures by both extracts. Choline acetyltransferase activity was stimulated by the cytosol in 8-day-old cultures and by the dialysate in 11-day-old cultures. The total acetylcholinesterase activity was higher in 8-, 11-, and 14-day-old cultures treated with the cytosol. When the cells were treated with the dialysate, the activity was only higher in 14-day-old cultures. We also found that following the addition of brain extracts, the specific activity of the enzymes we studied was enhanced and became close to the values found in vivo during embryogenesis. Thus in parallel to the morphological modifications observed in nerve cell cultures treated by embryo brain extracts, biochemical variations especially involved in synaptogenesis and membrane development could be measured.  相似文献   

15.
Predominately neuronal cell cultures were produced as described in previous communications. Neuronal cells were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies of the neuronal cells were performed at 13 and 20 days in culture. In addition to morphologic studies, biochemical assays including choline acetyltransferase (ChAT) activity, specific [3H]flunitrazepam (FLU) binding, clonazepam (CLO)-displaceable [3H]FLU binding, Ro5-4864-displaceable [3H]FLU binding, high-affinity [3H]GABA uptake, and protein determinations were performed. The data demonstrate that chelated ferric iron has an adverse effect on predominately neuronal cultures after 7 days of exposure as measured by choline acetyltransferase activity, while other measures remained unaffected; however, after 14 days of exposure all measures were significantly decreased. The effects of Fe-NTA exposure appear to be both concentration and duration-of-exposure related.  相似文献   

16.
dl-[2-14C]p-CHLOROPHENYLALANINE AS AN INHIBITOR OF TRYPTOPHAN 5-HYDROXYLASE   总被引:1,自引:0,他引:1  
The distribution in vivo of dl -[2-14C]p-chlorophenylalanine (p-CP) in regions and subcellular fractions of the rat brain was determined. The half-lives of p-CP and its metabolite p-chlorophenylpyruvic acid (p-CPPA) in plasma and brain were correlated with the development of inhibition of cerebral tryptophan 5-hydroxylase (EC 1.99.1.4). There was active transamination in vivo of p-CP and p-CPPA in the brain. Transport of indolealkylamino acids into brain was impaired by p-CP. Inhibition of tryptophan 5-hydroxylase could not be reversed by administration of large doses of l -tryptophan, l -tyrosine, or l -phenylalanine. After administration of [2-14C]p-CP in vivo, appreciable radioactivity was bound to cerebral proteins, including those with tryptophan 5-hydroxylase activity, as well as to phenylalanine 4-hydroxylase (EC 1.99.1.2) purified from liver. Amino acid analysis of the acid hydrolysate of purified, radioactive hepatic phenylalanine 4-hydroxylase showed over 80 per cent of the radioactivity to be present as p-CP. Neither the inhibition in vivo nor in vitro of tryptophan 5-hydroxylase could be reversed by dialysis; in controls, dialysis resulted in marked loss of enzyme activity. After incubation for 5 min with p-CP in vitro, enzymic activity was inhibited 60 per cent. In vitro, p-CPPA labelled protein much more extensively than p-CP, yet inhibited the enzyme less. Some of the label from p-CPPA was removable by dialysis.  相似文献   

17.
The aim of this study was to obtain neurochemical information on the possible role of acetylcholine (ACh) and -aminobutyric acid (GABA) as neurotransmitters in the pontine reticular formation (PRF). We studied the uptake of labeled choline and GABA, as well as the release of this amino acid and of ACh, in PRF slices of the rat. In addition, choline acetyltransferase, acetylcholinesterase and glutamate decarboxylase activities were assayed in PRF homogenates. The uptake of GABA was strictly Na+-dependent, whereas choline uptake was only partially Na+-dependent. The release of both ACh and GABA was stimulated by K+-depolarization, but only the former was Ca2+-dependent. Choline acetyltransferase activity in the PRF was 74% of that in the striatum, whereas acetylcholinesterase activity was considerably lower. Glutamate decarboxylase activity in the PRF was about half that observed in the striatum. These findings support the possibility that both ACh and GABA may act as neurotransmitters in the rat PRF.  相似文献   

18.
Growth and enzyme development in cell cultures of fetal rat brain were influenced by type of growth medium, cell density, and age of fetal tissue source. Cells grew better in one medium (DMEM), but the other (F12G) enhanced development of choline acetyltransferase activity. One type of growth medium (DMEM) lost efficacy 2 weeks after preparation of complete medium. Cell division rate was density dependent, and choline acetyltransferase development was related to time in culture and cell concentration. Some results suggested division of choline acetyltransferase producing cells. Differences in age of tissue source resulted primarily in differences in growth: cultures of 21 day fetal cells developed more protein per 106 cells inoculated than cultures of cells from younger animals; there was little difference in enzyme activity per culture. Conditions may be controlled such that fetal rat brain cells will grow and express differentiated functions in culture in a predictable manner.  相似文献   

19.
The kinetic properties of soluble and membrane-bound choline acetyltransferase (ChAc) were determined as a function of homogenization media and solubilization procedure in various regions of rat brain. Treatment of homogenate and/or subcellular fractions with KCl, Triton X-100, or ether dramatically altered the apparent Vmax and the degree of solubilization of the enzyme, but no fraction exhibited Km values substantially different from 12 μM for acetyl-CoA and 200 μM for choline. On the other hand, increasing the ionic strength of the assay medium for a given fraction from 0-02 M to 0-5 M increased both Vmax and Km values for both substrates. The absolute levels and subcellular distribution of ChAc were determined in 11 brain regions to localize cholinergic cell bodies and nerve endings. Levels of ChAc varied from 139 m-units/g tissue in caudate-putamen to 5-7 m-units/g tissue in cerebellum. The fraction of ChAc activity associated with synaptosomes varied from near 75 per cent in caudate-putamen, hippocampus and cortical regions to near 20 per cent in septum, locus coeruleus area and substantia nigra area. The apparent parallel distribution of cholinergic and catecholaminergic nerve endings is discussed in terms of a hypothetical model for the pathophysiology and treatment of Parkinson's syndrome.  相似文献   

20.
The developmental profiles of acetylcholinesterase and choline acetyltransferase in chick optic tectum and retina cell aggregates, over a 30-day period, have been determined and compared with the corresponding developmental curves obtained in vivo. Both acetylcholinesterase and choline acetyltransferase activities in retina cell aggregates and the acetylcholinesterase activity in optic tectum cell aggregates usually lie between 40 and 90% of the values measured in vivo for the same cell (tissue) type and developmental age. However, the choline acetyltransferase activity in tectum aggregates increases only during the first 7 days of culture, and then decreases to reach a low value of 8% of that measured in vivo, by day 24. This fact, which is associated with widespread degeneration and cell death, could be attributed to the condition of natural deafferentiation occurring in a tectum cell aggregate. A parallel has been drawn between this behavior of a tectum cell aggregate and the effect of early embryonic eye removal on the development of the contralateral optic tectum in vivo. Thus, the tectum may have a biphasic pattern of development, with an autonomous period of growth of about 2 wk, followed by an afference-dependent phase, while the retina behaves, from a cholinergic point of view, as a relatively self-sufficient structure.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - ACh acetylcholine - BW284 C51 dibromide 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号