首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xylanase production by Aspergillus nidulans   总被引:1,自引:0,他引:1  
Abstract The effect of phagocyte activation by TNF-α on the ability to trigger a chemiluminescence (CL) response, associated with the release of oxidizing species was evaluated in healthy human mononuclear cells in the presence of Mycobacterium leprae . Recombinant TNF-α (r-TNF-α) increased the CL response of unstimulated M. bovis BCG- and PMA-stimulated cells but did not reverse the M. leprae defective activation of the human phagocyte oxidative burst. M. leprae was less well phagocytosed than M. bovis BCG but phagocytosis of mycobacteria was not altered by addition of r-TNF-α. The failure of activation of oxygen-free radical production might have some relevance to the pathogenesis of leprosy.  相似文献   

2.
Proliferative responses of peripheral blood mononuclear cells (PBMC) to Mycobacterium leprae and bacillus Calmette Guerin-derived purified protein derivative (PPD) were studied in the presence or absence of interleukin 2 (IL 2) in high M. leprae responders (tuberculoid leprosy patients and healthy subjects) and low M. leprae responders (lepromatous leprosy patients). High responders in most cases developed a strong proliferative response to both antigens in the absence of IL 2. Additional IL 2 and restimulation with antigen plus autologous antigen-presenting cells (APC) allowed the derivation of antigen-specific T cell lines. The lines were assayed for proliferative responses to several mycobacterial antigens. Both PPD and M. leprae-triggered T cell lines exhibited a good proliferative response to either antigen and showed in addition a broad cross-reactivity with other mycobacteria, suggesting a preferential T cell response to epitopes shared by several mycobacterial species. Within the lepromatous group, 50% of the patients studied could mount a proliferative response to PPD antigen in the absence of IL 2, but none of them was able to do so with M. leprae antigen. The addition of IL 2 increased the number of positive responders to PPD in this group, and in some patients IL 2 was able to restore M. leprae reactivity as well, suggesting that IL 2 had overcome a suppressor mechanism. PPD and M. leprae-triggered T cell lines were obtained from these subjects (with IL 2 added from the beginning of the culture when required). M. leprae lines exhibited variable and unstable pattern of specificity, most lines exhibiting, at least transiently, a cross-reactive response to other mycobacteria, but some displaying only M. leprae-specific response. In contrast, PPD lines from these subjects consistently exhibited a good response to PPD, a lesser response to various other mycobacteria and no response to M. leprae, a pattern differing from that obtained with PPD lines of high M. leprae responders. Co-cultures of irradiated lepromatous PPD triggered T cell lines with fresh autologous PBMC non-specifically reduced the proliferative response of the latter to PPD, as well as to unrelated antigens. A similar suppression was also observed when PPD lines from one of the tuberculoid patients were assayed. PPD and M. leprae T cell lines from both high and low responders initially exhibited the same CD4+ CD8- phenotype. In all cases, antigenic specificity declined and could not be maintained after 5 to 8 wk of continuous culture, a change associated with the progressive appearance of CD8+ and Leu8+ cells.  相似文献   

3.
Components of current vaccines for Hansen's disease include Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and killed Mycobacterium leprae. BCG infections in humans are rare and most often occur in immune-compromised individuals. M. leprae on the other hand, although not causing clinical disease in most exposed individuals, is capable of infecting and replicating within mononuclear phagocytes. Lymphocytes from patients with the lepromatous form of Hansen's disease exhibit defective lymphokine production when challenged in vitro with M. leprae. This may result in inefficient mononuclear phagocyte activation for oxidative killing. To study the ability of normal phagocytes to ingest and respond oxidatively to BCG and M. leprae, we measured phagocytic cell O2- release and fluorescent oxidative product formation and visually confirmed the ingestion of the organisms. BCG stimulated a vigorous O2- generation in neutrophils and monocytes and flow cytometric oxidative product generation by neutrophils occurred in the majority of cells. M. leprae, stimulated a weak but significant O2- release requiring a high concentration of organisms and long exposure. By flow cytometric analysis, most neutrophils were able to respond to both organisms with the generation of fluorescent oxidative products. Neutrophil oxidative responses to M. leprae were substantially less than responses seen from neutrophils exposed to BCG. By microscopic examination of neutrophils phagocytizing FITC-labeled bacteria, it was shown that both M. leprae and BCG were slowly ingested but that more BCG appeared to be associated with the cell membrane of more of the cells. When phagocytic cells were incubated with BCG and M. leprae for 30 min and subsequently examined by electron microscopy, few organisms were seen in either neutrophils or monocytes. This suggests that BCG are easily recognized and slowly ingested by normal phagocytic cells, the majority of which respond with a strong oxidative burst. M. leprae appeared to only weakly stimulate phagocyte oxidative responses and were also slowly phagocytized.  相似文献   

4.
Oxidation of various substrates by whole cell suspensions of M. Lepraemurium and M. leprae was investigated using manometric techniques. Yeast extract, L-cysteine, dithioerythritol, and DL-penicillamine were oxidized by both M. lepraemurium as well as by M. leprae. Although tween 80 was oxidized by M. lepraemurium cell suspensions, it was not by M. leprae. Succinate was readily oxidized by whole cells of M. leprae (without being frozen) whereas it was oxidized only by M. lepraemurium cells frozen at -40 degrees C for one minute. The results indicate that M. leprae and M. lepraemurium are capable of oxidizing some substrates without requiring any cofactor and are not dependent upon host cells for respiration.  相似文献   

5.
Stimulation of phagocytes by several cytokines causes superoxide generation and consequently chemiluminescence. Since antigen-activated lymphocytes generate cytokines, we investigated whether antigen recognition by mononuclear cells, which contain both lymphocytes and monocytes, is accompanied by changes in lucigenin-dependent chemiluminescence. Mononulcear cells which underwent antigen-induced proliferation showed a delayed rise in lucigenin-dependent chemiluminescence in the absence of other stimuli. The common recall antigen Candida albicans increased spontaneous chemiluminescence of mononuclear cells from unselected donors up to 20-fold over control values after 48–72h of culture. With Rabies virus vaccine as specific antigenic stimulus, only mononuclear cells from rabies immunized individuals responded with enhanced delayed chemiluminescence. In contrast to opsonized zymosan and phorbol myristate acetate, antigens induced no oxidative burst within one hour after addition. Delayed mononuclear cel chemiluminescence was inhibited by the superoxide scavenger superoxide dismutase and by di-phenylene iodonium, a selective inhibitor of the phagocyte NADPH oxidase. A neutralizing monoclonal antibody against interferon-gamma completely abrogated antigen-induced chemiluminescence. Recombinant interferon-gamma by itself induced delayed mononuclear cell chemiluminescence. Thus, antigen-induced delayed mononuclear cell chemiluminescence represents activation of phagocyte NADPH oxidase by interferon-gamma generated by activated lymphocytes.  相似文献   

6.
M. tuberculosis and M. leprae are considered to be prototypical intracellular pathogens that have evolved strategies to enable growth in the intracellular phagosomes. In contrast, we show that lysosomes rapidly fuse with the virulent M. tuberculosis- and M. leprae-containing phagosomes of human monocyte-derived dendritic cells and macrophages. After 2 days, M. tuberculosis progressively translocates from phagolysosomes into the cytosol in nonapoptotic cells. Cytosolic entry is also observed for M. leprae but not for vaccine strains such as M. bovis BCG or in heat-killed mycobacteria and is dependent upon secretion of the mycobacterial gene products CFP-10 and ESAT-6. The cytosolic bacterial localization and replication are pathogenic features of virulent mycobacteria, causing significant cell death within a week. This may also reveal a mechanism for MHC-based antigen presentation that is lacking in current vaccine strains.  相似文献   

7.
Mycobacterium leprae synthesizes a unique phenolic glycolipid (PGL-I) in abundant quantities. We studied the effect of PGL-I on the generation of superoxide anion (O2-) by stimulated human monocytes. Peripheral blood monocytes pretreated with PGL-I released less O2- when stimulated with M. leprae than did control monocytes. Monocytes pretreated with dimycocerosyl phthiocerol, mycoside A of Mycobacterium kansasii, or mycoside B of Mycobacterium microti, on the other hand, released O2- in quantities comparable to control monocytes in response to M. leprae stimulation. Monocyte O2- release in response to other stimuli of the oxidative metabolic burst, such as PMA, zymosan, Mycobacterium bovis Bacille Calmette-Guérin, or M. kansasii, was unaffected by lipid pretreatment. These findings demonstrate that PGL-I has a direct effect on monocyte O2- generation in response to M. leprae and suggest that PGL-I is a modulator of phagocytic cell function.  相似文献   

8.
Mycobacterium leprae can synthesise pyrimidines de novo. Although pyrimidine synthesis could not be detected in intact bacteria, extracts contained all four enzymes unique to the de novo pathway which are detectable in mycobacteria by the methods used. Inhibition of aspartate transcarbamylase by UTP and ATP suggested that lack of pyrimidine synthetic activity in whole M. leprae could be a result of strong feedback inhibition.  相似文献   

9.
Leprosy presents with a clinical spectrum of skin lesions that span from strong Th1-mediated cellular immunity and control of bacillary growth at one pole to poor Ag-specific T cell immunity with extensive bacillary load and Th2 cytokine-expressing lesions at the other. To understand how the immune response to Mycobacterium leprae is regulated, human dendritic cells (DC), potent inducers of adaptive immune responses, exposed to M. leprae, Mycobacterium tuberculosis (Mtb), and Mycobacterium bovis bacillus Calmette-Guerin (BCG) were studied for their ability to be activated and to prime T cell proliferation. In contrast with Mtb and BCG, M. leprae did not induce DC activation/maturation as measured by the expression of selected surface markers and proinflammatory cytokine production. In MLR, T cells did not proliferate in response to M. leprae-stimulated DC. Interestingly, M. leprae-exposed MLR cells secreted increased Th2 cytokines as well as similar Th1 cytokine levels as compared with Mtb- and BCG-exposed cells. Gene expression analysis revealed a reduction in levels of mRNA of DC activation and maturation markers following exposure to M. leprae. Our data suggest that M. leprae does not induce and probably suppresses in vitro DC maturation/activation, whereas Mtb and BCG are stimulatory.  相似文献   

10.
Induction of Th1 cytokines, those associated with cell-mediated immunity, is critical for host defense against infection by intracellular pathogens, including mycobacteria. Signaling lymphocytic activation molecule (SLAM, CD150) is a transmembrane protein expressed on lymphocytes that promotes T cell proliferation and IFN-gamma production. The expression and role of SLAM in human infectious disease were investigated using leprosy as a model. We found that SLAM mRNA and protein were more strongly expressed in skin lesions of tuberculoid patients, those with measurable CMI to the pathogen, Mycobacterium leprae, compared with lepromatous patients, who have weak CMI against M. leprae. Peripheral blood T cells from tuberculoid patients showed a striking increase in the level of SLAM expression after stimulation with M. leprae, whereas the expression of SLAM on T cells from lepromatous patients show little change by M. leprae stimulation. Engagement of SLAM by an agonistic mAb up-regulated IFN-gamma production from tuberculoid patients and slightly increased the levels of IFN-gamma in lepromatous patients. In addition, IFN-gamma augmented SLAM expression on M. leprae-stimulated peripheral blood T cells from leprosy patients. Signaling through SLAM after IFN-gamma treatment of Ag-stimulated cells enhanced IFN-gamma production in lepromatous patients to the levels of tuberculoid patients. Our data suggest that the local release of IFN-gamma by M. leprae-activated T cells in tuberculoid leprosy lesions leads to up-regulation of SLAM expression. Ligation of SLAM augments IFN-gamma production in the local microenvironment, creating a positive feedback loop. Failure of T cells from lepromatous leprosy patients to produce IFN-gamma in response to M. leprae contributes to reduced expression of SLAM. Therefore, the activation of SLAM may promote the cell-mediated immune response to intracellular bacterial pathogens.  相似文献   

11.
In this study, we compared the level of TNF-alpha secretion induced in monocytic THP-1 cells after phagocytosis of Mycobacterium leprae, the causative agent of leprosy, and M. bovis BCG, an attenuated strain used as a vaccine against leprosy and tuberculosis. The presence of M. leprae and BCG was observed in more than 80% of the cells after 24 h of exposure. However, BCG but not M. leprae was able to induce TNF-alpha secretion in these cells. Moreover, THP-1 cells treated simultaneously with BCG and M. leprae secreted lower levels of TNF-alpha compared to cells incubated with BCG alone. M. leprae was able, however, to induce TNF-alpha secretion both in blood-derived monocytes as well as in THP-1 cells pretreated with phorbol myristate acetate. The inclusion of streptomycin in our cultures, together with the fact that the use of both gamma-irradiated M. leprae and heat-killed BCG gave similar results, indicate that the differences observed were not due to differences in viability but in intrinsic properties between M. leprae and BCG. These data suggest that the capacity of M. leprae to induce TNF-alpha is dependent on the stage of cell maturation and emphasize the potential of this model to explore differences in the effects triggered by vaccine strain versus pathogenic species of mycobacteria on the host cell physiology and metabolism.  相似文献   

12.
The extent to which M. leprae and its products induced suppression of T lymphocyte proliferation in vitro was evaluated. M. leprae antigens suppressed T cell proliferation in response to mitogens and antigens in both lepromatous and tuberculoid patients, as well as controls never exposed to M. leprae or M. leprae endemic areas. Both soluble and particulate fractions of M. leprae were found to suppress proliferation in a dose-dependent manner. The extent of suppression was inversely related to the proliferative response of the donors mononuclear cells to M. leprae. Evidence indicates that M. leprae contains both stimulatory and suppressive molecules for T cells. One such suppressive antigen, Lipoarabinomannan (LAM)-B of M. leprae, also suppressed the proliferative response of tuberculoid patients. Suppression was also observed with the LAM-B of M. tuberculosis. The suppressive effects observed were not due to the toxicity of the antigen. Some of the suppressive activity was mediated by T8+ suppressor cells and was expressed in both lepromatous and tuberculoid patients. We suggest that previous sensitization to M. leprae and other cross-reactive mycobacterial antigens determines the sensitivity of T cells to the suppressive effects of M. leprae antigens.  相似文献   

13.
Changes that occur with age in the opsonin‐independent oxidative activity of peripheral phagocytes in whole blood were examined by means of luminol chemiluminescence (LCL). The chemiluminescence was registered simultaneously by non‐stimulated and stimulated cells and the age‐related alterations of total and extracellular generation of reactive oxygen species (ROS) were studied using model systems. It was found that the rate of phagocyte activation by the glass surface of the measuring chambers, assessed by the time of the peak appearance after the start of LCL response, increased. However, the maximum oxidative activity and the integral oxidative capacity of the cells during adhesion, evaluated by the maximum LCL intensity and the area under the LCL curve, respectively, declined. No age‐dependence of formyl‐methionyl‐leucyl‐phenylalanine (fMLP)‐stimulated oxidative cellular activity for total ROS generation was detected. The maximum oxidative activity and the integral oxidative capacity of peripheral phagocytes to generate extracellular superoxide in response to fMLP was decreased. The likely causes for the observed alterations in phagocyte function are discussed and an analysis of the obtained results is given on the background of the contradictory data published on phagocyte oxidative activity age‐related changes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The cell envelope and cytoplasmic architecture of the Mycobacterium leprae Thai-53 strain were examined using the freeze-substitution technique of electron microscopy and compared with those of the M. tuberculosis H37Rv strain. Both strains had similarly multilayered envelope architectures composed of an electron-translucent layer, a peptidoglycan layer and the plasma membrane, from outside to inside. A comparison of the structures of these two mycobacteria revealed that the M. leprae cell was smaller in size and had a thinner peptidoglycan layer than the M. tuberculosis cell. The cell widths measured on electron micrographs were 0.44 microm for M. tuberculosis and 0.38 microm for M. leprae. The peptidoglycan layer of M. leprae was 4-5 nm, while the corresponding layer of M. tuberculosis was 10-15 nm.  相似文献   

15.
E B Harris  K Prabhakaran 《Microbios》1975,12(49):119-124
Our previous studies demonstrated that Mycobacterium leprae contains a characteristic o-diphenoloxidase which converts a variety of phenolic compounds to quinones in vitro. This enzyme was not present in any other mycobacteria tested. The results reported here deal with the uptake and binding of radioactive DOPA by M. leprae. The leprosy bacilli incubated with tritium-labelled DOPA, readily took up the substrate. The binding of DOPA by the bacilli was markedly inhibited by diethyldithiocarbamate. The organisms also bound tritiated norepinephrine. Mycobacterium phlei which does not oxidize phenolic substrates failed to bind DOPA. Cultures of melanocytes which contain o-diphenoloxidase took up tritiated DOPA. Catecholamine metabolism is known to be important in myocardial cells. Cultures of turtle-heart cells did not oxidize DOPA to quinone; however, these cells bound the labelled substrate. A cell line of fibroblasts derived from armadillo skin neither oxidized nor took up DOPA. The results indicate that, like melanocytes and turtle-heart cells, M. leprae probably possesses specific receptor sites for the binding and subsequent metabolism of phenolic substrates.  相似文献   

16.
Both protective immunity and immunopathology induced by mycobacteria are dependent on Ag-specific, CD4+ MHC class II-restricted T lymphocytes. The identification of Ag recognized by T cells is fundamental to the understanding of protective and pathologic immunity as well as to the design of effective immunoprophylaxis and immunotherapy strategies. Although some T cell clones are known to respond to recombinant mycobacterial heat shock proteins (hsp) like hsp3 65, the specificity of most T cells has remained unknown. We therefore have undertaken a specificity analysis of 48 well defined Mycobacterium leprae- and/or Mycobacterium tuberculosis-reactive (Th-1-like) T cell clones. Most clones (n = 44) were derived from different leprosy patients, and the remainder from one healthy control. Their HLA restriction molecules were DR2, DR3, DR4, DR5, DR7, DQ, or DP. T cell clones were stimulated with large numbers (n = 20 to 40) of mycobacterial SDS-PAGE-separated fractions bound to nitrocellulose. Each clone recognized a single fraction or peak with a particular Mr range. Some of the clones (n = 7) recognized the fraction that contained the hsp 65 as confirmed with the recombinant Ag. Most clones (n = 41), however, responded to Ag other than the hsp 65. Nine clones responded to a 67- to 80-kDa fraction. Five of them responded also to an ATP-purified, 70-kDa M. leprae protein, but only one of these five (that was HLA-DR2 restricted and cross-reactive with M. tuberculosis) recognized the recombinant C-terminal half (amino acids 278-621) of the M. leprae hsp 70 molecule and also recognized the recombinant M. tuberculosis hsp 70. We therefore have used the 5' part of the M. leprae hsp 70 gene that we have cloned recently. This fragment (that encodes amino acids 6-279) was indeed recognized by the other four M. leprae-specific T cells that were all HLA-DR3 restricted and did not cross-react with the highly homologous (95%) M. tuberculosis hsp 70. These results suggest that this novel fragment is a relevant T cell-stimulating Ag for leprosy patients. A panel of other recombinant Ag, including hsp 18 was tested. The majority of T cell clones appeared to recognize antigenic fractions distinct from hsp. In conclusion, T cells of leprosy patients see a large variety of different Ag including non-hsp, and one newly recognized moiety is the N-terminal M. leprae hsp 70 fragment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
T cell proliferative responses to Mycobacterium leprae were measured by immunization of mice at the base of the tail with Ag and challenging lymphocytes from draining lymph nodes in culture with M. leprae. C57BL/10J and B10.BR mice were identified as low responder mice and the congenic strains B10.M, B10.Q, and B10.AKM as high responders whereas F1 (high x low) hybrid mice were found to be low responders. The cellular basis of low responsiveness did not appear to result from a defect in Ag-presenting cells or the activation of suppressor T cells by M. leprae. The influence of the environment in which T cells developed on responsiveness to M. leprae was analyzed in chimeric mice prepared by irradiating F1(C57BL/10J x B10.M) mice and reconstituting with bone marrow from C57BL/10J, B10.M, or F1 donors. Six weeks later, chimeric mice were immunized with M. leprae, lymph node cells were subsequently prepared, and H-2 phenotyped and challenged in culture with M. leprae Ag. T cell proliferative responses were found to be low in all cases, similar to those observed using lymph node cells from F1 hybrid mice. These results suggested that high responder B10.M lymphocytes developing in the irradiated F1 mice became tolerized to antigenic determinants found on M. leprae. This implied cross-reactive epitopes existed between some mouse strains and M. leprae. Low responsiveness to M. leprae in low responder and F1 hybrid mice may result from tolerance to H-2-encoded Ag that show cross-reactivity with M. leprae.  相似文献   

18.
It has recently been demonstrated that laminin alpha2 chains present on the surface of Schwann cells are involved in the process of attachment of Mycobacterium leprae to these cells. In this study, a protein in the M. leprae cell wall that was found to be capable of binding alpha2-containing laminins (merosin) was isolated and characterized. The M. leprae laminin-binding protein was identified as a 21-kDa histone-like protein (Hlp), a highly conserved cationic protein present in other species of mycobacteria. The gene that encodes this protein was PCR amplified, cloned, and expressed, and the recombinant protein was shown to bind alpha2-laminins. More significantly, when added exogenously, Hlp was able to greatly enhance the attachment of mycobacteria to ST88-14 human Schwann cells. The capacity to bind alpha2-laminins and to enhance mycobacterial adherence to Schwann cells was also found in other cationic proteins such as host-derived histones. Moreover, mutation in the hlp gene was shown not to affect the capacity of mycobacteria to bind to ST88-14 cells, suggesting that alternative adhesins and/or pathways might be used by mycobacteria during the process of adherence to Schwann cells. The potential role of Hlp as a fortuitous virulence factor contributing to the pathogenesis of M. leprae-mediated nerve damage is discussed.  相似文献   

19.
The number of rRNA genes of Mycobacterium leprae was determined by restriction analysis of M. leprae total chromosomal DNA. A single set of rRNA genes was found. This set was subcloned from a cosmid library of M. leprae DNA into pUC13 and was characterized by restriction analysis and hybridization with Escherichia coli rRNA genes. The 16S, 23S, and 5S genes of M. leprae were clustered on a 5.3-kilobase DNA fragment. On one hand, restriction analysis of the set of rRNA genes showed the uniqueness of M. leprae among mycobacteria, but on the other hand, it suggested that M. leprae strains of several origins are very much alike. Quantitative hybridization studies between M. leprae rDNA and total DNA of various bacteria demonstrated a close relatedness between M. leprae and corynebacteria, nocardia, and mycobacteria, especially Mycobacterium tuberculosis.  相似文献   

20.
T cell proliferative responses to Mycobacterium leprae were measured after immunization of mice at the base of the tail with antigen and challenging lymphocytes from draining lymph nodes in culture with M. leprae. This T cell response to M. leprae has been compared in 18 inbred strains of mice. C57BL/10J mice were identified as low responder mice. The congenic strains B10.M and B10.Q were found to be high responders, whereas B10.BR and B10.P were low responders. F1 (B10.M X C57BL/10J) and F1 (B10.Q X C57BL/10J) hybrid mice were found to be low responders, similar to the C57BL/10J parent, indicating that the low responsive trait is dominant. Whereas B10.BR mice were shown to be low responders to M. leprae, B10.AKM and B10.A(2R) were clearly high responders, indicating that the H-2D region influences the magnitude of the T cell proliferative response. Gene complementation within the H-2 region was evident. Genes outside the H-2 region were also shown to influence the response to M. leprae. C3H/HeN were shown to be high responder mice, whereas other H-2k strains, BALB.K, CBA/N, and B10.BR, were low responders. Gene loci that influence the T cell proliferation assay have been discussed and were compared to known background genes which may be important for the growth of intracellular parasites. Because mycobacteria are intracellular parasites for antigen-presenting cells, genes that affect bacterial growth in these cells will also influence subsequent immune responses of the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号