首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.  相似文献   

2.
3.
Levels of dlk, an EGF-like homeotic protein, are critical for several differentiation processes. Because growth and differentiation are, in general, exclusive of each other, and increasing evidence indicates that Dlk1 expression changes in tumorigenic processes, we studied whether dlk could also affect cell growth. We found that, in response to glucocorticoids, Balb/c 3T3 cells with diminished levels of dlk expression develop foci-like cells that have lost contact inhibition, display altered morphology, and grow faster than control cell lines. Balb/c 3T3 cells spontaneously growing more rapidly are also dlk-negative cells. Moreover, screening by the yeast two-hybrid system, using Dlk1 constructs as baits, resulted in the isolation of GAS1 and acrogranin cDNAs. Interestingly, these proteins are cysteine-rich molecules involved in the control of cell growth. Taken together, these observations suggest that dlk may participate in a network of interactions controlling how the cells respond to growth or differentiation signals.  相似文献   

4.
This review focuses on the current knowledge about the function of the EGF-like homeotic protein dlk. dlk is a transmembrane protein that possesses six Epidermal Growth Factor-like sequences at the extracellular domain, a single transmembrane domain and a short intracellular tail. Because of its overall structure and amino acid homology, dlk belongs to the EGF-like homeotic protein family. This family includes proteins such as the Notch receptor and its homologues, as well as Notch ligands, such as Delta, Serrate, and their mammalian homologues Dll1, Dll2 and Dll3 and Jagged 1 and Jagged 2. (For a recent review see Fleming, 1998). dlk is highly expressed by preadipose cell lines, and neuroendocrine tumors, such as pheochromocytomas and neuroblastomas. dlk has been involved in several differentiation processes, such as adipogenesis, hematopoiesis and B cell lymphopoiesis, and neuroendocrine differentiation, including the differentiation of pancreas and the adrenal gland. The extracellular region of dlk can be released by action of an unknown protease and this soluble dlk variant accumulates in the amniotic fluid and is able to inhibit adipocyte differentiation in vitro. Recent evidence indicates, however, that membrane-associated dlk variants play a positive role in the differentiation process. These findings suggest that dlk plays an important role in differentiation and tumorigenesis of several cellular types.  相似文献   

5.
dlk1/FA1 (delta-like 1/fetal antigen-1) is a member of the epidermal growth factor-like homeotic protein family whose expression is known to modulate the differentiation signals of mesenchymal and hematopoietic stem cells in bone marrow. We have demonstrated previously that Dlk1 can maintain the human bone marrow mesenchymal stem cells (hMSC) in an undifferentiated state. To identify the molecular mechanisms underlying these effects, we compared the basal gene expression pattern in Dlk1-overexpressing hMSC cells (hMSC-dlk1) versus control hMSC (negative for Dlk1 expression) by using Affymetrix HG-U133A microarrays. In response to Dlk1 expression, 128 genes were significantly up-regulated (with >2-fold; p < 0.001), and 24% of these genes were annotated as immune response-related factors, including pro-inflammatory cytokines, in addition to factors involved in the complement system, apoptosis, and cell adhesion. Also, addition of purified FA1 to hMSC up-regulated the same factors in a dose-dependent manner. As biological consequences of up-regulating these immune response-related factors, we showed that the inhibitory effects of dlk1 on osteoblast and adipocyte differentiation of hMSC are associated with Dlk1-induced cytokine expression. Furthermore, Dlk1 promoted B cell proliferation, synergized the immune response effects of the bacterial endotoxin lipopolysaccharide on hMSC, and led to marked transactivation of the NF-kappaB. Our data suggest a new role for Dlk1 in regulating the multiple biological functions of hMSC by influencing the composition of their microenvironment "niche." Our findings also demonstrate a role for Dlk1 in mediating the immune response.  相似文献   

6.
7.
dlk1 is an epidermal growth factor (EGF)-like homeotic protein containing an intracellular region, a single transmembrane domain, and an extracellular region possessing six EGF-like repeats and a protease-target sequence. dlk1 functions as a modulator of adipogenesis, and other differentiation processes. The molecular mechanisms by which dlk1 regulates these processes are unclear. It has been reported that different Dlk1 mRNA spliced variants, encoding for isoforms possessing the protease-target sequence or not, determine the production of membrane-associated or soluble, secreted extracellular dlk1 proteins that appear to affect adipogenesis of 3T3-L1 cells differently. In particular, only soluble variants inhibit this process. Some recent evidence suggest that dlk1 may modulate extracellular stimuli inducing differentiation. Thus, an enforced decrease of Dlk1 expression in BALB/c 3T3 cells, which results in an increase of their adipogenic potential in response to insulin-like growth factor 1 (IGF-1), modifies the kinetics and levels of activation of ERK1/2 triggered by it. In this work, we identified a strong and specific interaction between the protease-target dlk1 region and the non-IGF binding region of IGF binding protein 1 (IGFBP1), a protein that binds to IGFs and modulates their action. We also observed that the increased adipogenic potential of 3T3-L1 cells caused by diminishing Dlk1 expression through transfection with an antisense Dlk1 expression construct was inhibited by the presence of IGFBP1 in the differentiation medium. On the other hand, the presence of IGFBP1 in the culture medium slightly increased the adipogenic potential of control 3T3-L1 cells, expressing regular levels of Dlk1. These data suggest that membrane dlk1 variants bind to extracellular IGFBP1/IGF-1 complexes, which may favor the release of IGF-1 and increase the local concentration of free IGF-1 that can enhance IGF receptor signaling, leading to adipogenesis.  相似文献   

8.
Serotonin-producing pancreatic endocrine tumours are rare neoplasms which in most cases exhibit malignant biological behaviour. These tumours, in the majority of the well-documented cases, are composed of argyrophil- and argentaffin-positive cells which contain large pleomorphic neurosecretory granules. In contrast, argyrophilic non-argentaffin pancreatic endocrine tumours with tumour cells containing round neurosecretory granules are exceptional. In this study we describe such a tumour not associated with clinical evidence of carcinoid syndrome in a 60-year-old woman. Histological examination revealed tumour extension in pancreatic lymphatic vessels and veins but no evidence of locoregional or distant metastases. Ten months after surgery the patient showed no recurrence of the disease. Immunohistochemistry revealed cytoplasmic serotonin production in the tumour cells which were negative for anti-gastrin, insulin, glucagon, somatostatin, pancreatic polypeptide (PP), vasoactive intestinal peptide (VIP) and ACTH. This study emphasizes the usefulness of combined ultrastructural and immunohistochemical investigations in order to identify and characterize the rare pancreatic endocrine tumours with serotonin production.  相似文献   

9.
Previous studies demonstrate that the delta-like (dlk) and preadipocyte factor 1 (Pref-1) genes encode similar proteins. Pref-1 is downregulated during adipocyte differentiation, and expression of ectopic Pref-1 inhibits adipogenesis. We explored whether dlk functions similarly to Pref-1 and studied the role of alternately spliced dlk variants encoding membrane-associated or -secreted forms. We also studied whether enforced downregulation of dlk/Pref-1 may enhance the differentiation response of non-committed cells. Ectopic expression of a potentially secreted dlk variant, conditioned media from dlk expressing cells or several individual epidermal-growth-factor-dlk peptides inhibited 3T3-L1 differentiation. This demonstrates that dlk and Pref-1 are functionally equivalent. dlk gene mRNA encoding for secreted variants decreased much faster than total dlk gene mRNA during differentiation of 3T3-L1 cells. In fact, total dlk or membrane-associated dlk protein expression increased during the first hours of differentiation. Cells sorted for lowest levels of dlk protein diminished or lost their ability to differentiate. These data suggest that membrane and secreted dlk protein variants play opposite roles in the control of adipogenesis. In addition, enforced downregulation of dlk protein expression in the weakly adipogenic Balb/c 3T3 cell line dramatically enhanced adipogenesis in response to insulin. These results indicate that dlk protein not only participates in processes leading to inhibition of adipogenesis but that the control of its expression and different spliced variants is essential for the adipogenic response to extracellular signals.  相似文献   

10.
The pancreatic islets of mouse embryos are comprised of four different endocrine cell types and of cells containing a hormone (i.e., glucagon) and a catecholamine enzyme (tyrosine hydroxylase, TH) which appear sequentially during development in vivo. The presence of TH in glucagon cells, however, is transient, since adult pancreatic A cells do not express the enzyme. In this study we sought to determine whether the endocrine precursor cells are primed to differentiate and express catecholamine enzymes during their maturation following a predetermined sequence or whether these processes are regulated by environmental cues. To answer this question, we used immunocytochemical procedures to examine the differentiation of pancreatic rudiments removed from E11 mouse embryos and maintained in culture and of pancreases that regenerated in vitro from E11 pancreatic ducts. We found that although all the endocrine cell types differentiate in the gland in culture, the sequence of their appearance is different from that in vivo, suggesting that the timing of differentiation may be regulated by environmental factors. We also found that, in vitro, the pancreas contains TH-glucagon cells, indicating that the expression of the enzyme by pancreatic A cells is independent of factors present in vivo. Moreover, the fact that the TH-glucagon cells also differentiate during pancreatic regeneration suggests that the expression of the enzyme may be a characteristic stage of endocrine cell precursors during maturation.  相似文献   

11.
Tissue kallikreins are thought to be present in the pancreatic islets of Langerhans and to aid in the conversion of proinsulin to insulin. In recent immunohistochemical studies, we observed strong staining of the newly identified human kallikreins 6 and 10 (hK6 and hK10) in the islets of Langerhans. Here, we examine hK6 and hK10 immunoexpression in different types of islet cells of the endocrine pancreas, in order to obtain clues for hK6 and hK10 function in these cells. Ten cases of normal pancreatic tissue, two cases of nesidioblastosis, five insulin-producing tumours and one case of multiple endocrine neoplasia 1 syndrome, containing an insulin-, a somatostatin- and several glucagon-producing tumours, as well as tiny foci of endocrine dysplasia with different predominance of the secreted hormones (mainly glucagon and pancreatic polypeptide) were included in the study. A streptavidin–biotin–peroxidase and an alkaline phosphatase protocol, as well as a sequential immunoenzymatic double staining method were performed, using specific antibodies against hK6, hK10, insulin, glucagon, somatostatin, pancreatic polypeptide, and serotonin. hK6 and hK10 immunoexpression was observed in the islets of Langerhans, including the pancreatic polypeptide-rich islets, in the normal pancreas. Scattered hK6 and hK10 positive cells were localized in relationship with pancreatic acinar cells. In the exocrine pancreas, a cytoplasmic and/or brush border hK6 and hK10 immunoexpression was observed in the median and small sized pancreatic ducts, while the acinar cells were negative. Foci of nesidioblastosis and endocrine dysplasia expressed both kallikreins. hK6 and hK10 were also strongly and diffusely expressed throughout all insulin-, glucagon- and somatostatin-producing tumours. The double staining method revealed co-localization of each hormone and hK6/hK10 respectively, in the same cellular population, in the normal as well as in the diseased pancreas. Our results support the view that hK6 and hK10 may be involved in insulin and other pancreatic hormone processing and/or secretion, as well as in physiological functions related to the endocrine pancreas.  相似文献   

12.
13.
14.
15.
Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.  相似文献   

16.
S Alpert  D Hanahan  G Teitelman 《Cell》1988,53(2):295-308
Insulin appears in the developing mouse pancreas at embryonic day 12 (e12). Transgenic mice harboring three distinct hybrid genes utilizing insulin gene regulatory information first express the transgene product two days earlier, at e10, in a few cells of the pancreatic bud. Throughout development and postnatal life, all of the insulin-producing (beta) cells coexpress the hybrid insulin gene. In addition, islet cells containing glucagon, somatostatin, pancreatic polypeptide, and the neuronal enzyme tyrosine hydroxylase coexpress the transgene when they first arise. Similarly, coexpression of these normally distinct islet cell markers occurs during differentiation of the four endocrine cell types. The transgene product also appears transiently during embryogenesis in cells of the neural tube and in neural crest. The results suggest a common precursor for the endocrine cells of the pancreas. Moreover, they imply a relationship between neural and pancreatic endocrine tissue.  相似文献   

17.
18.
19.
Viral gene carriers are being widely used as gene transfer systems in (trans)differentiation and reprogramming strategies. Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine pancreatic differentiation. While several viral vector systems have been employed in such studies, the results reported with adenovirus vectors have been the most promising in vitro and in vivo. In this study, we examined whether the viral vector system itself could impact the differentiation capacity of human bone-marrow derived mesenchymal stem cells (hMSCs) toward the endocrine lineage. Lentivirus-mediated expression of Pdx-1, Ngn-3, and Maf-A alone or in combination does not lead to robust expression of any of the endocrine hormones (i.e. insulin, glucagon and somatostatin) in hMSCs. Remarkably, subsequent transduction of these genetically modified cells with an irrelevant early region 1 (E1)-deleted adenoviral vector potentiates the differentiation stimulus and promotes glucagon gene expression in hMSCs by affecting the chromatin structure. This adenovirus stimulation was observed upon infection with an E1-deleted adenovirus vector, but not after exposure to helper-dependent adenovirus vectors, pointing at the involvement of genes retained in the E1-deleted adenovirus vector in this phenomenon. Lentivirus mediated expression of the adenovirus E4-ORF3 mimics the adenovirus effect. From these data we conclude that E1-deleted adenoviral vectors are not inert gene-transfer vectors and contribute to the modulation of the cellular differentiation pathways.  相似文献   

20.
Summary The coexistence of immunoreactivities to cholecystokinin, glucagon, glucagon-like peptide 1, salmon pancreatic polypeptide, neuropeptide tyrosine, and peptide tyrosine tyrosine was studied immunocytochemicaly, revealing for the first time in fish intestine the existence in the same cell of immunoreactivities to cholecystokinin-glucagon/glucagon-like peptide 1, cholecystokinin-salmon pancreatic polypeptide, glucagon/glucagon-like peptide 1-salmon pancreatic polypeptide, glucagon/glucagon-like peptide 1-neuropeptide tyrosine, salmon pancreatic polypeptide tyrosine tyrosine, and glucagon/glucagon-like peptide 1-peptide tyrosine tyrosine. Colocalization of cholecystokinin-salmon pancreatic polypeptide was observed only in the pyloric caeca of the rainbow trout Oncorhynchus mykiss, while the other colocalizations also occurred in proximal and middle intestinal segments. In all cases, endocrine cells immunoreactive to only one of the paired antisera were detected except for anti-glucagon and anti-glucagon-like peptide 1, which always immunostained the same cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号