首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

2.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

3.
The severe depletion of cholesteryl ester (CE) in steroidogenic cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays a specific role in the high density lipoprotein (HDL) CE-selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. The nature of this role, however, is unclear because a variety of apolipoproteins bind to SR-BI expressed in transfected cells. In this study the role of apoA-I in SR-BI-mediated HDL CE-selective uptake was tested via analyses of the biochemical properties of apoA-I(-/-) HDL and its interaction with SR-BI on adrenocortical cells, hepatoma cells, and cells expressing a transfected SR-BI. apoA-I(-/-) HDL are large heterogeneous particles with a core consisting predominantly of CE and a surface enriched in phospholipid, free cholesterol, apoA-II, and apoE. Functional analysis showed apoA-I(-/-) HDL to bind to SR-BI with the same or higher affinity as compared with apoA-I(+/+) HDL, but apoA-I(-/-) HDL showed a 2-3-fold decrease in the V(max) for CE transfer from the HDL particle to adrenal cells. These results indicate that the absence of apoA-I results in HDL particles with a reduced capacity for SR-BI-mediated CE-selective uptake. The reduced V(max) illustrates that HDL properties necessary for binding to SR-BI are distinct from those properties necessary for the transfer of HDL CE from the core of the HDL particle to the plasma membrane. The reduced V(max) for HDL CE-selective uptake likely contributes to the severe reduction in CE accumulation in steroidogenic cells of apoA-I(-/-) mice.  相似文献   

4.
The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein. Here, we show that processing of HDL(2) by SR-BI-overexpressing mice resulted in the preferential loss of apolipoprotein A-II (apoA-II). Short-term processing generated two distinct, small alpha-migrating particles. One particle (8.0 nm diameter) contained apoA-I and apoA-II; the other particle (7.7 nm diameter) contained only apoA-I. With extensive SR-BI processing, only the 7.7 nm particle remained. Only the 8.0 nm remnants were able to associate with HDL. Compared with HDL(2), this remnant was more readily taken up by the liver than by the kidney. We conclude that SR-BI-generated HDL remnants consist of particles with or without apoA-II and that only those containing apoA-II associate with HDL in an enzyme-independent manner. Extensive SR-BI processing generates small apoA-II-depleted particles unable to reassociate with HDL and readily taken up by the liver. This represents a pathway by which apoA-I and apoA-II catabolism are segregated.  相似文献   

5.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

6.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and a critical element of cholesterol metabolism. To better elucidate the role of the apoA-I structure-function in cholesterol metabolism, the conformation of the apoA-I N terminus (residues 6-98) on nascent HDL was examined by electron paramagnetic resonance (EPR) spectroscopic analysis. A series of 93 apoA-I variants bearing single nitroxide spin label at positions 6-98 was reconstituted onto 9.6-nm HDL particles (rHDL). These particles were subjected to EPR spectral analysis, measuring regional flexibility and side chain solvent accessibility. Secondary structure was elucidated from side-chain mobility and molecular accessibility, wherein two major α-helical domains were localized to residues 6-34 and 50-98. We identified an unstructured segment (residues 35-39) and a β-strand (residues 40-49) between the two helices. Residues 14, 19, 34, 37, 41, and 58 were examined by EPR on 7.8, 8.4, and 9.6 nm rHDL to assess the effect of particle size on the N-terminal structure. Residues 14, 19, and 58 showed no significant rHDL size-dependent spectral or accessibility differences, whereas residues 34, 37, and 41 displayed moderate spectral changes along with substantial rHDL size-dependent differences in molecular accessibility. We have elucidated the secondary structure of the N-terminal domain of apoA-I on 9.6 nm rHDL (residues 6-98) and identified residues in this region that are affected by particle size. We conclude that the inter-helical segment (residues 35-49) plays a role in the adaptation of apoA-I to the particle size of HDL.  相似文献   

7.
The binding of apoA-I-containing ligands to the HDL receptor scavenger receptor class B type I (SR-BI) was characterized using two different assays. The first employed conventional binding or competition assays with (125)I-labeled ligands. The second is a new nonradioactive ligand binding assay, in which the receptor-associated ligand is detected by quantitative immunoblotting ("immunoreceptor assay"). Using both methods, we observed that the K(d) value for spherical HDL (density = 1.1-1.13 g/ml) was approximately 16 microgram of protein/ml, while the values for discoidal reconstituted HDL (rHDL) containing proapoA-I or plasma apoA-I were substantially lower (approximately 0.4-5 microgram of protein/ml). We also observed reduced affinity and/or competition for spherical (125)I-HDL cell association by higher relative to lower density HDL and very poor competition by lipid-free apoA-I and pre-beta-1 HDL. Deletion of either 58 carboxyl-terminal or 59 amino-terminal residues from apoA-I, relative to full-length control apoA-I, resulted in little or no change in the affinity of corresponding rHDL particles. However, rHDL particles containing a double mutant lacking both terminal domains competed poorly with spherical (125)I-HDL for binding to SR-BI. These findings suggest an important role for apoA-I and its conformation/organization within particles in mediating HDL binding to SR-BI and indicate that the NH(2) and COOH termini of apoA-I directly or indirectly contribute independently to binding to SR-BI.  相似文献   

8.
Plasma HDL-cholesterol and apolipoprotein A-I (apoA-I) levels are strongly inversely associated with cardiovascular disease. However, the structure and protein composition of HDL particles is complex, as native and synthetic discoidal and spherical HDL particles can have from two to five apoA-I molecules per particle. To fully understand structure-function relationships of HDL, a method is required that is capable of directly determining the number of apolipoprotein molecules in heterogeneous HDL particles. Chemical cross-linking followed by SDS polyacrylamide gradient gel electrophoresis has been previously used to determine apolipoprotein stoichiometry in HDL particles. However, this method yields ambiguous results due to effects of cross-linking on protein conformation and, subsequently, its migration pattern on the gel. Here, we describe a new method based on cross-linking chemistry followed by MALDI mass spectrometry that determines the absolute mass of the cross-linked complex, thereby correctly determining the number of apolipoprotein molecules in a given HDL particle. Using well-defined, homogeneous, reconstituted apoA-I-containing HDL, apoA-IV-containing HDL, as well as apoA-I/apoA-II-containing HDL, we have validated this method. The method has the capability to determine the molecular ratio and molecular composition of apolipoprotein molecules in complex reconstituted HDL particles.  相似文献   

9.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

10.
Scavenger receptor, class B, type I (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester without the uptake and degradation of the particle. In transfected cells SR-BI recognizes HDL, low density lipoprotein (LDL) and modified LDL, protein-free lipid vesicles containing anionic phospholipids, and recombinant lipoproteins containing apolipoprotein (apo) A-I, apoA-II, apoE, or apoCIII. The molecular basis for the recognition of such diverse ligands by SR-BI is unknown. We have used direct binding analysis and chemical cross-linking to examine the interaction of murine (m) SR-BI with apoA-I, the major protein of HDL. The results show that apoA-I in apoA-I/palmitoyl-oleoylphosphatidylcholine discs, HDL(3), or in a lipid-free state binds to mSR-BI with high affinity (K(d) congruent with 5-8 microgram/ml). ApoA-I in each of these forms was efficiently cross-linked to cell surface mSR-BI, indicating that direct protein-protein contacts are the predominant feature that drives the interaction between HDL and mSR-BI. When complexed with dimyristoylphosphatidylcholine, the N-terminal and C-terminal CNBr fragments of apoA-I each bound to SR-BI in a saturable, high affinity manner, and each cross-linked efficiently to mSR-BI. Thus, mSR-BI recognizes multiple sites in apoA-I. A model class A amphipathic alpha-helix, 37pA, also showed high affinity binding and cross-linking to mSR-BI. These studies identify the amphipathic alpha-helix as a recognition motif for SR-BI and lead to the hypothesis that mSR-BI interacts with HDL via the amphipathic alpha-helical repeat units of apoA-I. This hypothesis explains the interaction of SR-BI with a wide variety of apolipoproteins via a specific secondary structure, the class A amphipathic alpha-helix, that is a common structural motif in the apolipoproteins of HDL, as well as LDL.  相似文献   

11.
While low apolipoprotein A-I (apoA-I) levels are primarily associated with increased high density lipoprotein (HDL) fractional catabolic rate (FCR), the factors that regulate the clearance of HDL from the plasma are unclear. In this study, the effect of lipid composition of reconstituted HDL particles (LpA-I) on their rate of clearance from rabbit plasma has been investigated. Sonicated LpA-I containing 1 to 2 molecules of purified human apoA-I and 5 to 120 molecules of palmitoyl-oleoyl phosphatidylcholine (POPC) exhibit similar charge and plasma FCR to that for lipid free apoA-I, 2.8 pools/day. Inclusion of 1 molecule of apoA-II to an LpA-I complex increases the FCR to 3.5 pools/day, a value similar to that observed for exchanged-labeled HDL3. In contrast, addition of 40 molecules of triglyceride, diglyceride, or cholesteryl ester to a sonicated LpA-I containing 120 moles of POPC and 2 molecules of apoA-I increases the negative charge of the particle and reduces the FCR to 1.8 pools/day. Discoidal LpA-I are the most positively charged lipoprotein particles and also have the fastest clearance rates, 4.5 pools/day. Immunochemical characterization of the different LpA-I particles shows that the exposure of an epitope at residues 98 to 121 of the apoA-I molecule is associated with an increased negative particle charge and a slower clearance from the plasma.We conclude that the charge and conformation of apoA-I are sensitive to the lipid composition of LpA-I and play a central role in regulating the clearance of these lipoproteins from plasma. conformation regulate the clearance of reconstituted high density lipoprotein in vivo.  相似文献   

12.
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport.  相似文献   

13.
Cavigiolio G  Shao B  Geier EG  Ren G  Heinecke JW  Oda MN 《Biochemistry》2008,47(16):4770-4779
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.  相似文献   

14.
Conversion of discoidal phospholipid (PL)-rich high density lipoprotein (HDL) to spheroidal cholesteryl ester-rich HDL is a central step in reverse cholesterol transport. A detailed understanding of this process and the atheroprotective role of apolipoprotein A-I (apoA-I) requires knowledge of the structure and dynamics of these various particles. This study, combining computation with experimentation, illuminates structural features of apoA-I allowing it to incorporate varying amounts of PL. Molecular dynamics simulated annealing of PL-rich HDL models containing unesterified cholesterol results in double belt structures with the same general saddle-shaped conformation of both our previous molecular dynamics simulations at 310 K and the x-ray structure of lipid-free apoA-I. Conversion from a discoidal to a saddle-shaped particle involves loss of helicity and formation of loops in opposing antiparallel parts of the double belt. During surface expansion caused by the temperature-jump step, the curved palmitoyloleoylphosphatidylcholine bilayer surfaces approach planarity. Relaxation back into saddle-shaped structures after cool down and equilibration further supports the saddle-shaped particle model. Our kinetic analyses of reconstituted particles demonstrate that PL-rich particles exist in discrete sizes corresponding to local energetic minima. Agreement of experimental and computational determinations of particle size/shape and apoA-I helicity provide additional support for the saddle-shaped particle model. Truncation experiments combined with simulations suggest that the N-terminal proline-rich domain of apoA-I influences the stability of PL-rich HDL particles. We propose that apoA-I incorporates increasing PL in the form of minimal surface bilayers through the incremental unwinding of an initially twisted saddle-shaped apoA-I double belt structure.  相似文献   

15.
Incubation of human high density lipoprotein (HDL) particles (density = 1.063-1.21 g/ml) with catalytic amounts of Manduca sexta lipid transfer particle (LTP) resulted in alteration of the density distribution of HDL protein such that the original HDL particles were transformed into new particles with an equilibrium density = 1.05 g/ml. Concomitantly, substantial amounts of protein were recovered in the bottom fraction of the density gradient. The LTP-induced alteration in HDL protein density distribution was dependent on the LTP concentration and incubation time. Electrophoretic analysis revealed that the lower density fraction contained apolipoprotein A-II (apoA-II) as the major apoprotein component while nearly all of the apoA-I was recovered in the bottom fraction. Lipid analysis of the HDL substrate and product fractions revealed that the apoA-I-rich fraction was nearly devoid of lipid (less than 1%, w/w). The lipid originally associated with HDL was recovered in the low density, apoA-II-rich, lipoprotein fraction, and the ratios of individual lipid classes were the same as in control HDL. Electron microscopy and gel permeation chromatography experiments revealed that the LTP-induced product lipoprotein population comprised particles of larger size (19.7 +/- 1.4-nm diameter) than control HDL (10.6 +/- 1.4-nm diameter). The results suggest that facilitated net lipid transfer between HDL particles altered the distribution of lipid such that apoprotein migration occurred and donor particles disintegrated. Similar results were obtained when human HDL3 or HDL2 density subclasses were employed as substrates for LTP. The lower surface area to core volume ratio of the larger, product lipoprotein particles compared with the substrate HDL requires that there be a decrease in the total exposed lipid/water interface which requires stabilization by apolipoprotein. Selective displacement of apoA-I by apoA-II or apoC, due to their greater surface binding affinity, dictates that apoA-I is preferentially lost from the lipoprotein surface and is therefore recovered as lipid-free apoprotein. Thus, it is conceivable that the structural arrangement of HDL particle lipid and apoprotein components isolated from human plasma may not represent the most thermodynamically stable arrangement of lipid and protein.  相似文献   

16.
The details of how high density lipoprotein (HDL) microstructure affects the conformation and net charge of apolipoprotein (apo) A-I in various classes of HDL particles have been investigated in homogeneous recombinant HDL (rHDL) particles containing apoA-I, palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate. Isothermal denaturation with guanidine HCl was used to monitor alpha-helix structural stability, whereas electrokinetic analyses and circular dichroism were used to determine particle charge and apoA-I secondary structure, respectively. Electrokinetic analyses show that at pH 8.6 apoA-I has a net negative charge on discoidal (POPC.apoA-I) particles (-5.2 electronic units/mol of apoA-I) which is significantly greater than that of apoA-I either free in solution or on spherical (POPC.cholesteryl oleate.apoA-I) rHDL (approximately -3.5 electronic units). Raising the POPC content (32-128 mol/ml of apoA-I) of discoidal particles 1) increases the particle major diameter from 9.3 to 12.1 nm, 2) increases the alpha-helix content from 62 to 77%, and 3) stabilizes the helical segments by increasing the free energy of unfolding (delta GD degree) from 1.4 to 3.0 kcal/mol of apoA-I. Raising the POPC content (28-58 mol/mol of apoA-I) of spherical particles 1) increases the particle diameter from 7.4 to 12.6 nm, 2) increases the percent alpha-helix from 62 to 69%, and 3) has no significant effect on delta GD degree (2.2 kcal/mol of apoA-I). This study shows that different HDL subspecies maintain particular apoA-I conformations that confer unique charge and structural characteristics on the particles. It is likely that the charge and conformation of apoA-I are critical molecular properties that modulate the metabolism of HDL particles and influence their role in cholesterol transport.  相似文献   

17.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

18.
The apolipoprotein A-I(Milano) (apoA-I(M)) is a molecular variant of apoA-I characterized by the Arg(173)-->Cys substitution, leading to the formation of homodimers A-I(M)/A-I(M). Upon interaction with palmitoyloleoylphosphatidylcholine, A-I(M)/A-I(M) forms only two species of reconstituted HDL (rHDL) particles, with diameters of 7.8 and 12.5 nm. We used limited proteolysis to analyze the conformation of A-I(M)/A-I(M) in the two rHDL particles, in comparison with that of apoA-I in rHDL of similar size. ApoA-I in the small, 7.8-nm rHDL is degraded to a greater extent (50% after 6 h) than in the large rHDL (<10% degraded after 6 h). The protease susceptibility of A-I(M)/A-I(M) in small and large rHDL is instead remarkably the same, with A-I(M)/A-I(M) being much more sensitive to proteolytic digestion (50% degraded after 10 min) than apoA-I. The identification of the proteolytic fragments by immunoblotting, N-terminal sequencing, and molecular mass determination, shows that the N-terminus of both proteins is resistant to proteolysis, with six cleavage sites located in the central and carboxy-terminal portions of the molecules. Cleavage in the middle of apoA-I occurs at distinct sites in 7.8-nm (Lys(118)) and 12.7-nm (Arg(123)) rHDL, indicating a different conformation in small and large rHDL particles. The A-I(M)/A-I(M) instead adopts a unique and identical conformation in small and large rHDL, with the carboxy-terminal portion of the molecule being remarkably more accessible to the proteases than in apoA-I. This suggests the presence of a novel carboxy-terminal domain in A-I(M)/A-I(M), not organized in a compact structure and not shared by wild-type apoA-I, which may account for the unique functional properties of A-I(M)/A-I(M).  相似文献   

19.
This report details the lipid composition of nascent HDL (nHDL) particles formed by the action of the ATP binding cassette transporter A1 (ABCA1) on apolipoprotein A-I (apoA-I). nHDL particles of different size (average diameters of ~ 12, 10, 7.5, and <6 nm) and composition were purified by size-exclusion chromatography. Electron microscopy suggested that the nHDL were mostly spheroidal. The proportions of the principal nHDL lipids, free cholesterol, glycerophosphocholine, and sphingomyelin were similar to that of lipid rafts, suggesting that the lipid originated from a raft-like region of the cell. Smaller amounts of glucosylceramides, cholesteryl esters, and other glycerophospholipid classes were also present. The largest particles, ~ 12 nm and 10 nm diameter, contained ~ 43% free cholesterol, 2-3% cholesteryl ester, and three apoA-I molecules. Using chemical cross-linking chemistry combined with mass spectrometry, we found that three molecules of apoA-I in the ~ 9-14 nm nHDL adopted a belt-like conformation. The smaller (7.5 nm diameter) spheroidal nHDL particles carried 30% free cholesterol and two molecules of apoA-I in a twisted, antiparallel, double-belt conformation. Overall, these new data offer fresh insights into the biogenesis and structural constraints involved in forming nascent HDL from ABCA1.  相似文献   

20.
The apolipoprotein A-IMilano (apoA-IM) is a molecular variant of apoA-I characterized by the Arg(173)-->Cys substitution, resulting in the formation of homodimers A-IM/A-IM. The introduction of the interchain disulfide bridge in the A-IM dimer limits the apolipoprotein conformational flexibility and restricts HDL particle size heterogeneity, thus possibly affecting HDL function in lipid metabolism and atherosclerosis protection. To investigate whether the structural changes in A-IM/A-IM affect apoA-I capacity for cell cholesterol uptake, we tested the ability of four reconstituted HDL (rHDL), that contained either apoA-I or A-IM/A-IM, to remove cholesterol from Fu5AH hepatoma cells and cholesterol-loaded murine primary macrophages (MPM). As the HDL particle size is known to affect the rHDL capacity for cell cholesterol uptake, the reconstitution conditions were carefully selected to produce two sets of rHDL particles of small and large size (7.8 and 12.5 nm in diameter). The small A-IM/A-IM rHDL were more efficient than the corresponding apoA-I particles as acceptors of membrane cholesterol from Fu5AH cells and MPM, and as inhibitors of cholesterol esterification in MPM. The large rHDL and the lipid-free apolipoproteins displayed instead similar capacities for cell cholesterol efflux. These results suggest that cell cholesterol efflux to rHDL particles of different size occurs through different mechanisms. Large HDL accommodate and retain the cholesterol molecules that have desorbed from the cell membrane into the extracellular fluid, in a process that is less sensitive to protein conformation. Small HDL accelerate the desorption of cholesterol from the cell membrane, in a process that is influenced by the conformation of the proteins on the surface of the acceptor particle. The enhanced efficiency of small A-IM/A-IM rHDL seems related to the peculiar structure of the protein on the rHDL surface, with a hydrophobic C-terminal domain extending out of the rHDL particle, available for anchoring the acceptor to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号