首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Chronobiology international》2013,30(10):1239-1246
Although circadian disruption is an accepted term, little has been done to develop methods to quantify the degree of disruption or entrainment individual organisms actually exhibit in the field. A variety of behavioral, physiological and hormonal responses vary in amplitude over a 24-h period and the degree to which these circadian rhythms are synchronized to the daily light–dark cycle can be quantified with a technique known as phasor analysis. Several studies have been carried out using phasor analysis in an attempt to measure circadian disruption exhibited by animals and by humans. To perform these studies, species-specific light measurement and light delivery technologies had to be developed based upon a fundamental understanding of circadian phototransduction mechanisms in the different species. When both nocturnal rodents and diurnal humans, experienced different species-specific light–dark shift schedules, they showed, based upon phasor analysis of the light–dark and activity–rest patterns, similar levels of light-dependent circadian disruption. Indeed, both rodents and humans show monotonically increasing and quantitatively similar levels of light-dependent circadian disruption with increasing shift-nights per week. Thus, phasor analysis provides a method for quantifying circadian disruption in the field and in the laboratory as well as a bridge between ecological measurements of circadian entrainment in humans and parametric studies of circadian disruption in animal models, including nocturnal rodents.  相似文献   

3.
4.
Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. In this study, we show that experimentally induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified, leading to hypothermia and death after four consecutive weekly 6-h phase advances of the light/dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of proinflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However, polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus, and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related dysregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work.  相似文献   

5.
6.
We propose a multiscale chemo-mechanical model of cancer tumor development in epithelial tissue. The model is based on the transformation of normal cells into a cancerous state triggered by a local failure of spatial synchronization of the circadian rhythm. The model includes mechanical interactions and a chemical signal exchange between neighboring cells, as well as a division of cells and intercalation that allows for modification of the respective parameters following transformation into the cancerous state. The numerical simulations reproduce different dephasing patterns—spiral waves and quasistationary clustering, with the latter being conducive to cancer formation. Modification of mechanical properties reproduces a distinct behavior of invasive and localized carcinoma.  相似文献   

7.
《Chronobiology international》2013,30(10):1449-1457
Brain monoamines – such as noradrenaline (NA), dopamine (DA) and serotonin (5-HT) – regulate several important physiological functions, including the circadian rhythm. The purpose of this study was to examine changes in NA, DA and 5-HT levels in various brain regions and their effect on core body temperature (Tc), heart rate (HR) and locomotor activity (Act) in rats following exposure to an artificial light/dark (LD) cycle. For this, male Wistar rats were housed at an ambient temperature (Ta) of 23?°C and 50% relative humidity with free access to food and water. Rats were exposed to either natural (12?h:12?h) or artificial (6?h:6?h) LD cycles for 1 month, after which each brain region was immediately extracted and homogenized to quantify the amounts of NA, DA and 5-HT by high-performance liquid chromatography. Behavioural changes were also monitored by the ambulatory activity test (AAT). Notably, we found that artificial LD cycles disrupted the physiological circadian rhythms of Tc, HR and Act. Although the 5-HT levels of rats with a disrupted circadian rhythm decreased in cell bodies (dorsal and median raphe nuclei) and projection areas (frontal cortex, caudate putamen, preoptic area and suprachiasmatic nucleus) relative to the control group, NA levels increased both in the cell body (locus coeruleus) and projection area (paraventricular hypothalamus). No significant changes were found with respect to DA. Moreover, circadian rhythm-disrupted rats also showed anxious behaviours in AAT. Collectively, the results of this study suggest that the serotonergic and noradrenergic systems, but not the dopaminergic system, are affected by artificial LD cycles in brain regions that control several neural and physiological functions, including the regulation of physiological circadian rhythms, stress responses and behaviour.  相似文献   

8.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   

9.
《Chronobiology international》2013,30(10):1458-1468
Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p?<?0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and metabolic regulators. This forms an important basis for further elucidation of the physiological benefits of EC-facilitated circadian synchrony.  相似文献   

10.
11.
《Chronobiology international》2013,30(8):1029-1048
Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like – now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children – is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446–484?nm λ) spectrum synchronizes the CTS and whose UV-B (290–315?nm λ) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in today’s man-made artificial light environment, which in our opinion is long overdue.  相似文献   

12.
Animal studies demonstrate that circadian rhythm disruption during pregnancy can be deleterious to reproductive capacity and the long-term health of the progeny. Our previous studies in rats have shown that exposure of pregnant dams to an environment that significantly disrupts maternal circadian rhythms programs increased adiposity and poor glucose metabolism in offspring. In this study, we used mice with a ClockΔ19 mutation to determine whether foetal development within a genetically disrupted circadian environment affects pregnancy outcomes and alters the metabolic health of offspring. Ten female ClockΔ19+MEL mutant mice were mated with 10 wildtype males, and 10 wildtype females were mated with 10 ClockΔ19+MEL mutant males. While genetically identical, the heterozygote foetuses were exposed to either a normal (wildtype dams) or disrupted (ClockΔ19+MEL mutant dams) circadian environment during gestation. Pregnancy outcomes including time to mate, gestation length, litter size and birth weight were assessed. One male and one female offspring from each litter were assessed for postnatal growth, body composition, intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test at 3 and 12 months of age. There was no effect of maternal genotype on pregnancy outcomes, with days to plug, gestation length, litter size and perinatal mortality not significantly different between wildtype and ClockΔ19+MEL mutant dams. Similarly, there was no effect of maternal genotype on weight of the offspring at birth or at any stage of postnatal growth. While there was an effect of sex on various tissue weights at 3 and 12 months of age, there were minimal effects of maternal genotype. Relative adrenal weight was significantly reduced (?32%) in offspring from ClockΔ19+MEL mutant dams, whereas gastrocnemius muscle was significantly increased (+16%) at 3 months of age only. Intraperitoneal glucose tolerance tests at 3 months of age revealed female offspring from ClockΔ19+MEL mutant dams had significantly reduced area under the curve following glucose administration (?25%), although no differences were found at 12 months of age. There was no effect of maternal genotype on intraperitoneal insulin tolerance at 3 or 12 months of age for either sex. These results demonstrate that foetal growth within a genetically disrupted circadian environment during gestation has no effect on pregnancy success, and only marginal impacts upon the long-term metabolic health of offspring. These results do not support the hypothesis that circadian rhythm disruption during pregnancy programs poor metabolic homeostasis in offspring. However, when maintained on a 12L:12D photoperiod, the ClockΔ19+MEL mutant dams display relatively normal patterns of activity and melatonin secretion, which may have reduced the impact of the mutation upon foetal metabolic programming.  相似文献   

13.
Conflicting evidence exists as to whether there are differences between males and females in circadian timing. The aim of the current study was to assess whether sex differences are present in the circadian regulation of melatonin and cortisol in plasma and urine matrices during a constant routine protocol. Thirty-two healthy individuals (16 females taking the oral contraceptive pill (OCP)), aged 23.8 ± 3.7 (mean ± SD) years, participated. Blood (hourly) and urine (4-hourly) samples were collected for measurement of plasma melatonin and cortisol, and urinary 6-sulfatoxymelatonin (aMT6s) and cortisol, respectively. Data from 28 individuals (14 females) showed no significant differences in the timing of plasma and urinary circadian phase markers between sexes. Females, however, exhibited significantly greater levels of plasma melatonin and cortisol than males (AUC melatonin: 937 ± 104 (mean ± SEM) vs. 642 ± 47 pg/ml.h; AUC cortisol: 13581 ± 1313 vs. 7340 ± 368 mmol/L.h). Females also exhibited a significantly higher amplitude rhythm in both hormones (melatonin: 43.8 ± 5.8 vs. 29.9 ± 2.3 pg/ml; cortisol: 241.7 ± 23.1 vs. 161.8 ± 15.9 mmol/L). Males excreted significantly more urinary cortisol than females during the CR (519.5 ± 63.8 vs. 349.2 ± 39.3 mol) but aMT6s levels did not differ between sexes. It was not possible to distinguish whether the elevated plasma melatonin and cortisol levels observed in females resulted from innate sex differences or the OCP affecting the synthetic and metabolic pathways of these hormones. The fact that the sex differences observed in total plasma concentrations for melatonin and cortisol were not reproduced in the urinary markers challenges their use as a proxy for plasma levels in circadian research, especially in OCP users.  相似文献   

14.
15.
《Chronobiology international》2013,30(9):1278-1293
Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep–wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72?h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST, mesor, circadian quotient, 24-h autocorrelation and bed and wake times; PER3 was associated with amplitude, 24-h autocorrelation, acrophase and bed and wake times. Most of the observed associations involved a significant interaction between genotype and HIV. In this chronic illness population, polymorphisms in several circadian genes were associated with measures of sleep disruption and timing. These findings extend the evidence for an association between genetic variability in circadian regulation and sleep outcomes to include the sleep–wake patterns experienced by adults living with HIV/AIDS. These results provide direction for future intervention research related to circadian sleep–wake behavior patterns.  相似文献   

16.
Plasma corticosterone (CORT) measures are a common procedure to detect stress responses in rodents. However, the procedure is invasive and can influence CORT levels, making it less than ideal for monitoring CORT circadian rhythms. In the current paper, we examined the applicability of a non-invasive fecal CORT metabolite measure to assess the circadian rhythm. We compared fecal CORT metabolite levels to circulating CORT levels, and analyzed change in the fecal circadian rhythm following an acute stressor (i.e. blood sampling by tail veil catheter). Fecal and blood samples were collected from male adolescent rats and analyzed for CORT metabolites and circulating CORT respectively. Fecal samples were collected hourly for 24 h before and after blood draw. On average, peak fecal CORT metabolite values occurred 7-9 h after the plasma CORT peak and time-matched fecal CORT values were well correlated with plasma CORT. As a result of the rapid blood draw, fecal production and CORT levels were altered the next day. These results indicate fecal CORT metabolite measures can be used to assess conditions that disrupt the circadian CORT rhythm, and provide a method to measure long-term changes in CORT production. This can benefit research that requires long-term glucocorticoid assessment (e.g. stress mechanisms underlying health).  相似文献   

17.
ABSTRACT

Introduction: Two of the most ubiquitous fatigue countermeasures used by shift-working nurses are napping and caffeine. This mixed-methods case study investigated the ways nurses and midwives utilised napping and caffeine countermeasures to cope with shift work, and associated sleep, physical health and psychological health outcomes.

Materials and Methods: = 130 Australian shift-working nurses and midwives (mean age = 44 years, range = 21–67, 115F, 15M) completed the Standard Shiftwork Index. A sub-set of 22 nurses and midwives completed an in-depth interview.

Results: Nearly 70% of participants reported napping. Those who napped during night shifts had significantly less total sleep time before (F2,75 = 5.5, < 0.01) and between days off (F2,82 = 3.9, < 0.05). By the end of the night shift, average hours of time awake were significantly less for prophylactic and on-shift nappers compared to non-nappers (F2,85 = 97.2, p < 0.001). Since starting shift work, the percentage of high caffeine consumers (>400 mg/day) increased from 15% to 33% of the sample and an average of 4 (SD = 2) caffeinated beverages per day was reported. Increased caffeine consumption was associated with greater sleep disturbance (= 0.26, < 0.05), psychological distress (= 0.37, < 0.001), abdomen pain (= 0.27, < 0.05) and weight gain since starting shift work (= 0.25, < 0.05). Interviews confirmed these relationships and revealed that caffeine consumption on night shift was common, whereas napping on night shift was dependent on a number of factors including ability to sleep during the day.

Conclusion: This study identified reasons shift workers chose to engage in or abstain from napping and consuming caffeine, and how these strategies related to poor sleep and health outcomes. Further research is required to help develop recommendations for shift workers regarding napping and caffeine consumption as fatigue countermeasures, whilst taking into account the associated hazards of each strategy.  相似文献   

18.
We have used information-theoretic measures to compute the amount of dependency which exists between two and three gradient directions at separate locations in an ensemble of natural images. Control experiments were performed on other image classes: phase randomized natural images, whitened natural images and Gaussian noise images. The results show that, for an ensemble of natural images, the amount of 2-point and 3-point gradient direction dependency is equivalent to its ensemble of phase randomized natural images. Therefore, we conclude that the amount of gradient direction dependency in an ensemble of natural images is determined by the ensemble's mean power spectrum rather than the phase spectra of the images. Moreover, this relationship does not extend to individual natural images, the amount of dependency between gradient magnitudes, or gradient directions at high gradient magnitude locations.  相似文献   

19.
ABSTRACT

Day and night cycles are the most important cue for the central clock of human beings, and they are also important for the gut clock. The aim of the study is to determine the differences in the gut microbiota of rotational shift workers when working the day versus night shift. Fecal samples and other data were collected from 10 volunteer male security officers after 4 weeks of day shift work (07:00–15:00 h) and also after 2 weeks of night shift work (23:00–07:00 h). In total, 20 stool samples were collected for analysis of gut microbiota (10 subjects x 2 work shifts) and stored at ?80°C until analysis by 16 S rRNA sequencing. The relative abundances of Bacteroidetes were reduced and those of Actinobacteria and Firmicutes increased when working the night compared to day shift. Faecalibacterium abundance was found to be a biomarker of the day shift work. Dorea longicatena and Dorea formicigenerans were significantly more abundant in individuals when working the night shift. Rotational day and night shift work causes circadian rhythm disturbance with an associated alteration in the abundances of gut microbiota, leading to the concern that such induced alteration of gut microbiota may at least partially contribute to an increased risk of future metabolic syndrome and gastrointestinal pathology.  相似文献   

20.
The present study investigates the effects of age and mating status on the circadian variations of gland sex pheromone titre in female Spodoptera litura Fabricius. Similar to other nocturnal moths, S. litura females exhibit circadian variations of gland sex pheromone contents, with higher levels during scotophase and lower levels during photophase. The sex pheromone titre in the glands peaks during the first scotophase after eclosion and sharply declines afterwards. Higher pheromone contents during scotophase may facilitate female reproductive activities, and the negative relationship between pheromone titre and female calling is likely the result of pheromone release during female calling. Interestingly, the present study demonstrates that mated S. litura females have significantly higher sex pheromone titre in their pheromone glands (PGs) than virgin females. This finding contrasts with all previous studies of other insect species, in which mating generally reduces the sex pheromone titre in female PGs. In S. litura, mating and male accessory gland fluids can suppress female calling behaviours and re‐matings. These results suggest that the suppression of female calling behaviours by mating and male accessory gland fluids may significantly reduce the release of sex pheromones and thus result in higher sex pheromone titre in the PGs of mated females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号