首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00?h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6?h or 6000 lux for 3?h) was given either in the morning (AM light), 7?h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3?h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors’ previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6?h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. (Author correspondence: )  相似文献   

2.
The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.  相似文献   

3.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00-17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim-light condition: 17:00-02:00 h) or 2000 lux (evening bright-light condition: 17:00-02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim-light condition was significantly less than under the bright-light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

4.
On the basis of our previous findings that bright-light exposure during the daytime has profound influence on physiological parameters such as melatonin secretion and tympanic temperature in humans, we proposed the hypothesis that bright vs. dim light-exposure during the daytime has a different influence on the activity of the digestive system via the endocrine and/or autonomic nervous system. To examine this hypothesis, we conducted a series of counterbalanced experiments in which subjects stayed the daytime (7:00 to 15:00h) under either a dim (80 lux) or bright (5,000 lux) light condition. We measured gastrointestinal activity using a breath hydrogen (indicative of carbohydrate malabsorption) and an electrogastrography (EGG, indicative of gastric myoelectric activity) test. The results showed the postprandial breath hydrogen excretion during the following nighttime period after daytime exposure to the dim-light condition was significantly higher than under the bright-light condition (p < 0.05). In addition, the spectrum total power of the EGG recorded after taking the evening meal was significantly lower for the dim than bright-light condition (p < 0.05). These results support our hypothesis and indicate that dim-light exposure during the daytime suppresses the digestion of the evening meal, resulting in malabsorption of dietary carbohydrates in it.  相似文献   

5.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

6.
ABSTRACT

We examined phase shifts to bright morning light when sleep was restricted by delaying bedtimes. Adolescents (n = 6) had 10-h sleep/dark opportunities for 6 days. For the next 2 days, half were put to bed 4.5 h later and then allowed to sleep for 5.5 h (evening room light + sleep restriction). The others continued the 10-h sleep opportunities (sleep satiation). Then, sleep schedules were gradually shifted earlier and participants received bright light (90 min, ~6000 lux) after waking for 3 days. As expected, sleep satiation participants advanced (~2 h). Evening room light + sleep restriction participants did not shift or delayed by 2–4 h.

Abbreviations: DLMO: dim light melatonin onset.  相似文献   

7.
We treated delayed sleep phase syndrome (DSPS) with an illuminated mask that provides light through closed eyelids during sleep. Volunteers received either bright white light (2,700 lux, n = 28) or dim red light placebo (0.1 lux, n = 26) for 26 days at home. Mask lights were turned on (< 0.01 lux) 4 h before arising, ramped up for 1 h, and remained on at full brightness until arising. Volunteers also attempted to systematically advance sleep time, avoid naps, and avoid evening bright light. The light mask was well tolerated and produced little sleep disturbance. The acrophase of urinary 6-sulphatoxymelatonin (6-SMT) excretion advanced significantly from baseline in the bright group (p < 0.0006) and not in the dim group, but final phases were not significantly earlier in the bright group (ANCOVA ns). Bright treatment did produce significantly earlier phases, however, among volunteers whose baseline 6-SMT acrophase was later than the median of 0602 h (bright shift: 0732-0554 h, p < 0.0009; dim shift: 0746-0717 h, ns; ANCOVA p = 0.03). In this subgroup, sleep onset advanced significantly only with bright but not dim treatment (sleep onset shift: bright 0306-0145 h, p < 0.0002; dim 0229-0211 h, ns; ANCOVA p < .05). Despite equal expectations at baseline, participants rated bright treatment as more effective than dim treatment (p < 0.04). We conclude that bright-light mask treatment advances circadian phase and provides clinical benefit in DSPS individuals whose initial circadian delay is relatively severe.  相似文献   

8.
Jet lag is caused by a misalignment between circadian rhythms and local destination time. As humans typically take longer to re-entrain after a phase advance than a phase delay, eastward travel is often more difficult than westward travel. Previous strategies to reduce jet lag have focused on shaping the perceived light-dark cycle after arrival, in order to facilitate a phase shift in the appropriate direction. Here we tested treatments that travelers could use to phase advance their circadian rhythms prior to eastward flight. Thus, travelers would arrive with their circadian rhythms already partially re-entrained to local time. We determined how far the circadian rhythms phase advanced, and the associated side effects related to sleep and mood. Twenty-eight healthy young subjects participated in 1 of 3 different treatments, which all phase advanced each subject's habitual sleep schedule by 1 h/day for 3 days. The 3 treatments differed in morning light exposure for the 1st 3.5 h after waking on each of the 3 days: continuous bright light (> 3000 lux), intermittent bright light (> 3000 lux, 0.5 h on, 0.5 off, etc.), or ordinary dim indoor light (< 60 lux). A phase assessment in dim light (< 10 lux) was conducted before and after the treatments to determine the endogenous salivary dim light melatonin onset (DLMO). The mean DLMO phase advances in the dim, intermittent, and continuous light groups were 0.6, 1.5, and 2.1 h, respectively. The intermittent and continuous light groups advanced significantly more than the dim light group (p < 0.01) but were not significantly different from each other. The side effects as assessed with actigraphy and logs were small. A 2-h phase advance may seem small compared to a 6- to 9-h time zone change, as occurs with eastward travel from the USA to Europe. However, a small phase advance will not only reduce the degree of re-entrainment required after arrival, but may also increase postflight exposure to phase-advancing light relative to phase-delaying light, thereby reducing the risk of antidromic re-entrainment. More days of preflight treatment could be used to produce even larger phase advances and potentially eliminate jet lag.  相似文献   

9.
《Chronobiology international》2013,30(7):1438-1453
Increased sensitivity to light-induced melatonin suppression characterizes some, but not all, patients with bipolar illness or seasonal affective disorder. The aim of this study was to test the hypothesis that patients with premenstrual dysphoric disorder (PMDD), categorized as a depressive disorder in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), have altered sensitivity to 200 lux light during mid-follicular (MF) and late-luteal (LL) menstrual cycle phases compared with normal control (NC) women. As an extension of a pilot study in which the authors administered 500 lux to 8 PMDD and 5 NC subjects, in the present study the authors administered 200 lux to 10 PMDD and 13 NC subjects during MF and LL menstrual cycle phases. Subjects were admitted to the General Clinical Research Center (GCRC) in dim light (<50 lux) to dark (during sleep) conditions at 16:00?h where nurses inserted an intravenous catheter at 17:00?h and collected plasma samples for melatonin at 30-min intervals from 18:00 to 10:00?h, including between 00:00 and 01:00?h for baseline values, between 01:30 and 03:00?h during the 200 lux light exposure administered from 01:00 to 03:00?h, and at 03:30 and 04:00?h after the light exposure. Median % melatonin suppression was significantly greater in PMDD (30.8%) versus NC (?0.2%) women (p?=?.040), and was significantly greater in PMDD in the MF (30.8%) than in the LL (?0.15%) phase (p?=?.047). Additionally, in the LL (but not the MF) phase, % suppression after 200 lux light was significantly positively correlated with serum estradiol level (p ?=? .007) in PMDD patients, but not in NC subjects (p?>?.05). (Author correspondence: )  相似文献   

10.
Early morning rectal body temperature is lowest when melatonin levels are highest in humans. Although pharmacological doses of melatonin are hypothermic in humans, the relationship between endogenous melatonin and temperature level has not been investigated. We measured rectal body temperature in nine normal men whose melatonin levels were suppressed by all-night sleep deprivation in bright light and compared values with those seen in sleep in the dark, sleep deprivation in dim light (to control for the stimulatory effect of wakefulness on temperature), and sleep deprivation in bright light with an infusion of exogenous melatonin that replicated endogenous levels. Minimum rectal temperature, calculated from smoothed temperature data from 2300 to 0515 h, was greater in bright-light sleep deprivation, resulting in suppression of melatonin, than in conditions of sleep deprivation in dim light or sleep in the dark. An exogenous melatonin infusion in bright light returned the minimum temperature to that seen in dim-light sleep deprivation. A nonsignificant elevation in mean and minimum temperature was noted in all conditions of sleep deprivation relative to sleep. We conclude that melatonin secretion contributes to the lowering of core body temperature seen in the early morning in humans.  相似文献   

11.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

12.
The human circadian system is maximally sensitive to short-wavelength (blue) light. In a previous study we found no difference between the magnitude of phase advances produced by bright white versus bright blue-enriched light using light boxes in a practical protocol that could be used in the real world. Since the spectral sensitivity of the circadian system may vary with a circadian rhythm, we tested whether the results of our recent phase-advancing study hold true for phase delays. In a within-subjects counterbalanced design, this study tested whether bright blue-enriched polychromatic light (17000 K, 4000 lux) could produce larger phase delays than bright white light (4100 K, 5000 lux) of equal photon density (4.2×1015 photons/cm2/sec). Healthy young subjects (n?=?13) received a 2 h phase delaying light pulse before bedtime combined with a gradually delaying sleep/dark schedule on each of 4 consecutive treatment days. On the first treatment day the light pulse began 3 h after the dim light melatonin onset (DLMO). An 8 h sleep episode began at the end of the light pulse. Light treatment and the sleep schedule were delayed 2 h on each subsequent treatment day. A circadian phase assessment was conducted before and after the series of light treatment days to determine the time of the DLMO and DLMOff. Phase delays in the blue-enriched and white conditions were not significantly different (DLMO: ?4.45±2.02 versus ?4.48±1.97 h; DLMOff: ?3.90±1.97 versus ?4.35±2.39 h, respectively). These results indicate that at light levels commonly used for circadian phase shifting, blue-enriched polychromatic light is no more effective than the white polychromatic lamps of a lower correlated color temperature (CCT) for phase delaying the circadian clock. (Author correspondence: )  相似文献   

13.
The most useful marker for human circadian phase position is the dim light melatonin onset (DLMO). This is optimally obtained by sampling blood or saliva in the evening at intervals of 30 min or less. Ambient light intensity should not exceed 30-50 lx. For many years, the DLMO was determined mainly with the 'gold standard' GCMS technique for measuring melatonin in human plasma. However, new and improved RIAs now provide the requisite sensitivity and accuracy (specificity) for detecting the time that low daytime levels begin to increase in the evening: the lower the operational threshold for the DLMO, the more reliable it is as a phase marker.  相似文献   

14.
Delayed sleep phase disorder (DSPD) is assumed to be common amongst adolescents, with potentially severe consequences in terms of school attendance and daytime functioning. The most common treatment approaches for DSPD are based on the administration of bright light and/or exogenous melatonin with or without adjunct behavioural instructions. Much is generally known about the chronobiological effects of light and melatonin. However, placebo-controlled treatment studies for DSPD are scarce, in particular in adolescents and young adults, and no standardized guidelines exist regarding treatment. The aim of the present study was, therefore, to investigate the short- and long-term effects on sleep of a DSPD treatment protocol involving administration of timed bright light and melatonin alongside gradual advancement of rise time in adolescents and young adults with DSPD in a randomized controlled trial and an open label follow-up study. A total of 40 adolescents and young adults (age range 16–25 years) diagnosed with DSPD were recruited to participate in the study. The participants were randomized to receive treatment for two weeks in one of four treatment conditions: dim light and placebo capsules, bright light and placebo capsules, dim light and melatonin capsules or bright light and melatonin capsules. In a follow-up study, participants were re-randomized to either receive treatment with the combination of bright light and melatonin or no treatment in an open label trial for approximately three months. Light and capsules were administered alongside gradual advancement of rise times. The main end points were sleep as assessed by sleep diaries and actigraphy recordings and circadian phase as assessed by salivary dim light melatonin onset (DLMO). During the two-week intervention, the timing of sleep and DLMO was advanced in all treatment conditions as seen by about 1?h advance of bed time, 2?h advance of rise time and 2?h advance of DLMO in all four groups. Sleep duration was reduced with approximately 1?h. At three-month follow-up, only the treatment group had maintained an advanced sleep phase. Sleep duration had returned to baseline levels in both groups. In conclusion, gradual advancement of rise time produced a phase advance during the two-week intervention, irrespective of treatment condition. Termination of treatment caused relapse into delayed sleep times, whereas long-term treatment with bright light and melatonin (three months) allowed maintenance of the advanced sleep phase.  相似文献   

15.
Various combinations of interventions were used to phase-delay circadian rhythms to correct their misalignment with night work and day sleep. Young participants (median age = 22, n = 67) participated in 5 consecutive simulated night shifts (2300 to 0700) and then slept at home (0830 to 1530) in darkened bedrooms. Participants wore sunglasses with normal or dark lenses (transmission 15% or 2%) when outside during the day. Participants took placebo or melatonin (1.8 mg sustained release) before daytime sleep. During the night shifts, participants were exposed to a moving (delaying) pattern of intermittent bright light (approximately 5000 lux, 20 min on, 40 min off, 4-5 light pulses/night) or remained in dim light (approximately 150 lux). There were 6 intervention groups ranging from the least complex (normal sunglasses) to the most complex (dark sunglasses + bright light + melatonin). The dim light melatonin onset (DLMO) was assessed before and after the night shifts (baseline and final), and 7 h was added to estimate the temperature minimum (Tmin). Participants were categorized by their amount of reentrainment based on their final Tmin: not re-entrained (Tmin before the daytime dark/sleep period), partially re-entrained (Tmin during the first half of dark/sleep), or completely re-entrained (Tmin during the second half of dark/ sleep). The sample was split into earlier participants (baseline Tmin < or = 0700, sunlight during the commute home fell after the Tmin) and later participants (baseline Tmin > 0700). The later participants were completely re-entrained regardless of intervention group, whereas the degree of re-entrainment for the earlier participants depended on the interventions. With bright light during the night shift, almost all of the earlier participants achieved complete re-entrainment, and the phase delay shift was so large that darker sunglasses and melatonin could not increase its magnitude. With only room light during the night shift, darker sunglasses helped earlier participants phase-delay more than normal sunglasses, but melatonin did not increase the phase delay. The authors recommend the combination of intermittent bright light during the night shift, sunglasses (as dark as possible) during the commute home, and a regular, early daytime dark/sleep period if the goal is complete circadian adaptation to night-shift work.  相似文献   

16.
Partial sleep deprivation is increasingly common in modern society. This study examined for the first time if partial sleep deprivation alters circadian phase shifts to bright light in humans. Thirteen young healthy subjects participated in a repeated-measures counterbalanced design with 2 conditions. Each condition had baseline sleep, a dim-light circadian phase assessment, a 3-day phase-advancing protocol with morning bright light, then another phase assessment. In one condition (no sleep deprivation), subjects had an 8-h sleep opportunity per night during the advancing protocol. In the other condition (partial sleep deprivation), subjects were kept awake for 4 h in near darkness (<0.25 lux), immediately followed by a 4-h sleep opportunity per night during the advancing protocol. The morning bright light stimulus was four 30-min pulses of bright light (~5000 lux), separated by 30-min intervals of room light. The light always began at the same circadian phase, 8 h after the baseline dim-light melatonin onset (DLMO). The average phase advance without sleep deprivation was 1.8 ± 0.6 (SD) h, which reduced to 1.4 ± 0.6 h with partial sleep deprivation (p < 0.05). Ten of the 13 subjects showed reductions in phase advances with partial sleep deprivation, ranging from 0.2 to 1.2 h. These results indicate that short-term partial sleep deprivation can moderately reduce circadian phase shifts to bright light in humans. This may have significant implications for the sleep-deprived general population and for the bright light treatment of circadian rhythm sleep disorders such as delayed sleep phase disorder.  相似文献   

17.
If applied during corresponding times of the individual melatonin profiles, bright light shifts the circadian phase equally, irrespective of diurnal type. We examined 32 young men: 10 morning types, 11 evening types, and 11 with no predisposition; 16 with high and 16 with low melatonin production. Each completed a 40 h session that included two consecutive nights during which the participants remained, apart from two short breaks during the second day, in bed under an illumination level of 30 lux. A 4 h bright light pulse was applied just after the expected individual melatonin onset the first night to cause a delay of the hormonal profile the second night. Salivary levels of melatonin and cortisol were determined hourly. Melatonin was delayed by 108 min, and cortisol offset and onset by 47 and 110 min, respectively. The cortisol quiescent period (start and end of the quiescent period being defined by the decrease below and the increase above 60% of the average cortisol production between 18:00 and 09:00 h) was prolonged. In contrast to the other subgroups, the delay of melatonin synthesis was about 0.5 h shorter in morning types, and their cortisol quiescent period was shortened. The present study leads to the hypothesis that, despite individually scheduled light exposure, morning types are potentially disadvantaged due to elevated cortisol levels, if persisting, in career night workers.  相似文献   

18.
If applied during corresponding times of the individual melatonin profiles, bright light shifts the circadian phase equally, irrespective of diurnal type. We examined 32 young men: 10 morning types, 11 evening types, and 11 with no predisposition; 16 with high and 16 with low melatonin production. Each completed a 40 h session that included two consecutive nights during which the participants remained, apart from two short breaks during the second day, in bed under an illumination level of 30 lux. A 4 h bright light pulse was applied just after the expected individual melatonin onset the first night to cause a delay of the hormonal profile the second night. Salivary levels of melatonin and cortisol were determined hourly. Melatonin was delayed by 108 min, and cortisol offset and onset by 47 and 110 min, respectively. The cortisol quiescent period (start and end of the quiescent period being defined by the decrease below and the increase above 60% of the average cortisol production between 18:00 and 09:00 h) was prolonged. In contrast to the other subgroups, the delay of melatonin synthesis was about 0.5 h shorter in morning types, and their cortisol quiescent period was shortened. The present study leads to the hypothesis that, despite individually scheduled light exposure, morning types are potentially disadvantaged due to elevated cortisol levels, if persisting, in career night workers.  相似文献   

19.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

20.
Masking is known to affect a variety of circadian rhythms, making it difficult to use them as reliable markers of circadian phase position. Melatonin may be unique in that it appears to be masked only by (bright) light. Sleep and activity do not appear to influence the melatonin rhythm. By measuring the onset of melatonin production, a clearly demarcated event, we can reliably assess circadian phase position, provided blood is sampled under dim light (the dim light melatonin onset, or DL.MO). The DLMO has been useful in assessing the phase-shifting properties of bright light and in phase typing patients with chronobiologic disorders, such as winter depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号