首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

2.
A kinetic model for the anaerobic filter (AF) that takes into account the mass fractions of sulfate-reducing bacteria (SRB) (f(SRB)) and methanogenic bacteria (MB) (f(MB)) and an inhibiting effect of H(2)S on bacterial groups is proposed. When the acetate-fed AFs were maintained at the low organic loading rate of 2.5kg COD/m(3)d, variations of the influent COD/SO(4)(2-) ratio (0.5-3.0) does not materially affect the acetate removal efficiency (all varying between 98.1% and 99.7%). With an increase in influent COD/SO(4)(2-) ratio, both the biofilm thickness and the specific substrate utilization rate decreased slightly but f(SRB) decreased markedly. The estimated results of f(SRB) and f(MB) showed that SRB out-competed MB for bacterial growth if the influent COD/SO(4)(2-) ratio was maintained at less than 1.3, whereas MB out-competed SRB for bacterial growth if the influent COD/SO(4)(2-) ratio was maintained at greater than 2.0. The specific substrate utilization rate of SRB (0.19-0.24mg acetate/mg VSSd) was lower than that of MB (0.31-0.59mg acetate/mg VSSd). The estimated kinetic parameters disclosed that the affinity of acetate to MB was higher and unionized H(2)S imposed a greater inhibiting effect on MB. The model simulation results (acetate and sulfate removal) agreed well with the experimental results.  相似文献   

3.
We investigated bacterial and archaeal community structures and population dynamics in two anaerobic bioreactors processing a carbohydrate- and sulfate-rich synthetic wastewater. A five-compartment anaerobic migrating blanket reactor (AMBR) was designed to promote biomass and substrate staging, which partially separates the processes of methanogenesis and sulfidogenesis in the middle and outer compartment(s) respectively. The second reactor was a conventional, single-compartment upflow anaerobic sludge blanket (UASB) reactor. Both reactors, which were seeded with the same inoculum, performed well when the influent chemical oxygen demand (COD)/SO(4) (2-) mass ratio was 24.4. The AMBR performed worse than the UASB reactor when the influent COD/SO(4) (2-) mass ratio was decreased to 5.0 by raising the sulfate load. Terminal restriction fragment length polymorphism analyses of bacterial 16S rRNA genes showed that the increase in sulfate load had a greater impact on bacterial diversity and community structure for the five AMBR compartments than for the UASB reactor. Moreover, bacterial community profiles across AMBR compartments became more similar through time, indicating a converging, rather than a staged community. While similar populations were abundant in both reactors at the beginning of the experiment, fermenting bacteria (clostridia, streptococci), and sulfate-reducing bacteria became more abundant in the AMBR, after shifting to a higher sulfate load, while a novel Thermotogales-like population eventually became predominant in the UASB reactor. A similar shift in the community structure of the hydrogenotrophic methanogens in the AMBR occurred: representatives of the Methanobacteriaceae out-competed the Methanospirillaceae after increasing the sulfate load in the AMBR, while the archaeal community structure was maintained in the UASB.  相似文献   

4.
Two bench-scale horizontal anaerobic fixed bed reactors were tested to remove both sulfate and organic matter from wastewater. First, the reactors (R1 and R2) were supplied with synthetic wastewater containing sulfate and a solution of ethanol and volatile fatty acids. Subsequently, R1 and R2 were fed with only ethanol or acetate, respectively. The substitution to ethanol in R1 increased the sulfate reduction efficiency from 83% to nearly 100% for a chemical oxygen demand to sulfate (COD/sulfate) ratio of 3.0. In contrast, in R2, the switch in carbon source to acetate strongly decreased sulfidogenesis and the maximum sulfate reduction achieved was 47%. Process stability in long-term experiments and high removal efficiencies of both organic matter and sulfate were achieved with ethanol as the sole carbon source. The results allow concluding that syntrophism instead of competition between the sulfate reducing bacteria and acetoclastic methanogenic archaeal populations prevailed in the reactor.  相似文献   

5.
The performance and biomass retention of an upflow anaerobic sludge bed (UASB) reactor treating liquid fraction of dairy manure has been investigated at several organic loading rates. Two identical UASB reactors were employed. The biomass of one UASB reactor (FBR) had previously been treated with a cationic polyacrylamide, the other reactor was operated as a control reactor (CR). At 3 and 2 days of HRT both reactors functioned similarly, but at 1.5 days HRT some differences were observed between both effluents. Mean COD(T) removal percentages were 83.4% and 76.5%; COD(VFA) values in effluents were 977 and 2682 mg l(-1) for the FBR and the CR respectively. The VSS initial value in both reactors was 25.66 g VSS, whereas after the experiment the quantities were 31.83 g VSS in the FBR and 23.18 g VSS in the CR reactors. Polymer addition resulted in a higher degree of biomass retention and better performance in the FBR reactor.  相似文献   

6.
The feasibility of lead removal through biological sulfate reduction process with ethanol as electron donor was investigated. Sulfide-rich effluent from biological process was used to remove lead as lead sulfide precipitate. The experiments were divided into two stages; Stage I startup and operation of sulfidogenic process in a UASB reactor and Stage II lead sulfide precipitation. In Stage I, the COD:S ratio was gradually reduced from 15:1 to 2:1. At the COD:S ratio of 2:1, sulfidogenic condition was achieved as identified by 80-85% of electron flow by sulfate reducing bacteria (SRB). COD and sulfate removal efficiency were approximately 78% and 50%, respectively. In Stage II, the effluent from UASB reactor containing sulfide in the range of 30-50 mg/L and lead-containing solution of 45-50 mg/L were fed continuously into the precipitation chamber in which the optimum pH for lead sulfide precipitation of 7.5-8.5 was maintained. It was found that lead removal of 85-95% was attained.  相似文献   

7.
Summary The influence of the volatile fatty acid composition of waste waters on biofilm development and on the time course of reactor start-up was investigated in laboratory scale fluidized bed reactors. It was found that biofilm development proceeded in a similar way with either acetate, butyrate, propionate or a mixture of these compounds as carbon source in the waste water. Startup was retarded, however, with propionate as sole carbon source. Scanning electron microscopic examination revealed that immobilization of bacteria on the sand used as adhesive support initially occurred in crevices and that thereupon the surface of the sand particles became colonized. The composition of the newly developed biomass was determined when reactors reached steady state. Significant differences in the relative substrate spectra and in the amounts of hydrogenotrophic and acetotrophic methanogenic bacteria were measured. The differences reflected the differences in the composition of the waste waters. The results obtained emphasize the role of the structure of the carrier surface in start-up of methanogenic fluidized bed reactors.Abbreviations used Aw ash weight - COD chemical oxygen demand - EB fluidized bed - hbi vitamin B12-HBI - spt sarcinapterin - UASB upflow anaerobic sludge blanket - VFA volatile fatty acid - VSS volatile suspended solids - Ww wet weight  相似文献   

8.
Sulfate reduction in salt-rich wastewaters using unadapted granular sludge was investigated in 0.9 L UASB reactors (pH 7.0 +/- 0.2; hydraulic retention time from 8-14 h) fed with acetate, propionate, or ethanol at organic loading rates up to 10 gCOD x L(-1) x day(-1) and in excess sulfate (COD/SO(4) (2-) of 0.5). High-rate sulfate reduction rates (up to 3.7 gSO(4) (2-) x L(-1).day(-1)) were achieved at salinities exceeding 50 gNaCl.L(-1) and 1 gMgCl(2) x L(-1). Sulfate reduction proceeded at a salinity of up to 70 gNaCl x L(-1) and 1 gMgCl(2) x L(-1) (corresponding to a conductivity of about 85-90 mS x cm(-1)), although at lower rates compared to a conductivity of 60-70 mS x cm(-1). Ethanol as well as propionate were suitable substrates for sulfate reduction, with acetate and sulfide as the end products. The successful high-rate treatment was due to the proliferation of a halotolerant incomplete oxidizing SRB population present in the unadapted inoculum sludge. Bioaugmentation of this sludge with the acetate oxidizing halotolerant SRB Desulfobacter halotolerans was unsuccessful, as the strain washed out from the UASB reactor without colonizing the UASB granules.  相似文献   

9.
The anaerobic transformation and degradation of nitrophenols by granular sludge was investigated in upflow anaerobic sludge blanket (UASB) reactors continuously fed with a volatile fatty acid (VFA) mixture as the primary substrate. During the start-up, subtoxic concentrations of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2, 4-dinitrophenol (2, 4-DNP) were utilized. 4-NP and 2, 4-DNP were readily converted to the corresponding aromatic amine; whereas 2-NP was converted to nonaromatic products via intermediate formation of 2-aminophenol (2-AP). These conversions led to a dramatic detoxification of the mononitrophenols because the reactors treated the nitrophenolics at the concentrations which were over 25 times higher than those that caused severe inhibition. VFA removal efficiencies greater than 99% were achieved in both reactors at loading rates greater than 11.4 g COD per liter of reactor volume per day even at volumetric loading of mononitrophenols up to 910 mg/L . d.The sludges obtained from each of the reactors at the end of the continuous experiments were assayed for their specific nitrophenol reducing activity in the presence of different primary substrates. Reduction rates of 45 and 26 mg/g volatile suspended solids per day were observed for 2-NP and 4-NP, respectively, when utilizing the VFA mixture as primary substrate. Hydrogen, an interspecies-reduced compound, and substrates that provide interspecies-reducing equivalents-such as butyrate, propionate, and ethanol stimulated nitrophenol reduction, whereas acetate and methanol did not. Anaerobic batch biodegradability tests with the 2-NP-adapted sludge revealed that its corresponding aromatic amine, 2-AP, was degraded to methane at a specific rate of 14.5 mg/g VSS . d. Acetate was observed to be the major intermediate during 2-AP degradation in the presence of a specific methanogenic inhibitor 2-bromoethanesulfonate. The results of this study indicate that UASB reactors can be applied to rapidly detoxify and, under certain circumstances, degrade nitroaromatic compounds. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
This paper presents a mathematical model able to simulate under dynamic conditions the physical, chemical and biological processes prevailing in a biological sulfate reducing gas-lift reactor. The proposed model is based on differential mass balance equations for substrates, products and bacterial groups involved in a sulfate reduction process. Heterotrophic sulfate reducing bacteria (HSRB), autotrophic sulfate reducing bacteria (ASRB), homoacetogenic bacteria (HB), methanogenic archaea (MA) and acetate degraders (AD) are the microbial groups taken into account in the model. The model is also used to validate a steady-state design model previously proposed by Esposito et al. [1].The proposed model is able to simulate the competition between the biological bacteria growing in the reactor, and predict the performance of a gas-lift reactor. The model includes two main parts: (1) a kinetic part including growth, metabolism and competition of SRB, HB, MA and AD in the system and (2) a mass-transfer part describing the thermodynamic concentration equilibria of gaseous components in the liquid and gas phase. The model has been validated using experimental data obtained by operating a laboratory-scale gas-lift reactor as described in Esposito et al. [2].The model can be applied to simulate the sulfate reduction process in a gas-lift reactor for several purposes, such as the evaluation of the optimal process conditions in terms of COD:SO42? ratio, hydraulic retention time and gas input flow. In particular, model simulations reported in this paper show the model capability to predict the prevailing bacterial species and concentrations in the reactor as a function of the hydraulic retention time.  相似文献   

11.
The competitive and syntrophic interactions between different anaerobic bacterial trophic groups in sulphate limited expanded granular sludge bed (EGSB) reactors was investigated. The outcome of competition between the sulphate-reducing, methanogenic and syntrophic populations after development in reactors at varying influent COD/SO4 (2-) ratios was examined in batch activity tests with the inclusion of specific sulphate reducing bacteria (SRB) and methane producing archaea (MPA) inhibitors. SRB species could not out-compete MPA species for acetate at influent COD/SO4 (2-) ratios as low as 2. The SRB were seen to play a more significant role in the conversion of hydrogen but did not become completely dominant. HMPA were responsible for hydrogen utilization at an influent COD/SO4 (2-) ratio of 16, and were still dominant when the ratio was reduced to 4. It was only when the COD/SO4 (2-) ratio was reduced to 2 that the HSRB assumed a more influential role. SRB species were significant in the degradation of propionate at all COD/SO4 (2-) ratios applied. Sludge samples were analysed by scanning electron microscopy (SEM), granule size distribution and fluorescent in situ hybridization (FISH), combined with confocal laser scanning microscopy (CLSM), to monitor any changes in granule morphology under the various COD/SO4 (2-) ratios imposed during the reactor trial. In situ hybridization with domain- and species-specific oligonucleotide probes demonstrated a layered architecture with an outer layer harboring mainly Eubacterial cells and an inner layer dominated by Archaeal species.  相似文献   

12.
The characteristics and development of thermophilic anaerobic sludge in upflow staged sludge bed (USSB) reactors were studied. The compartmentalized reactors were inoculated with partially crushed mesophilic granular sludge and then fed with either a mixture of volatile fatty acids (VFA) or a mixture of sucrose and VFA. The staged degradation of the soluble substrate in the various compartments led to a clear segregation of specific types of biomass along the height of the reactor, particularly in reactors fed with the sucrose-VFA mixture. Both the biological as well as the physical properties of the cultivated sludge were affected by the fraction of nonacidified substrate. The sludge in the first compartment of the reactor treating the sucrose-VFA mixture was whitish and fluffy, most likely resulting from the development of acidifying bacteria. Sludge granules which developed in the top part of this reactor possessed the highest acetogenic and methanogenic activity and the highest granule strength as well. The experiments also revealed that the conversion of the sucrose-VFA mixture into methane gradually deteriorated at prolonged operation at high organic loading rates (50 to 100 g COD . L(-1) . day(-1)). Stable long-term performance of a reactor can only be achieved by preserving the sludge segregation along the height of the reactor. In the reactor fed solely with the VFA mixture little formation of granular sludge occurred. In this reactor, large differences in sludge characteristics were also observed along the reactor height. Li(+)-tracer experiments indicated that the hydraulic regime in the USSB reactor is best characterized by a series of at least five completely mixed reactors. The formation of granular sludge was found to influence the liquid flow pattern. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
The influence of a high energy substrate, i.e. sucrose, on the granular sludge yield and the development of different types of granular sludge was investigated by using Upflow Anaerobic Sludge Bed (UASB) reactors fed with synthetic wastewater. The feed COD was a mixture of volatile fatty acids (VFA) i.e., 20, 40, and 40% of the COD as C2-, C3-, and C4-VFA, respectively. Furthermore, experiments were carried out in which 10 and 30% of the VFA COD was substituted with sucrose. The following distinctly different types of granules were observed in each testrun: in the reactor fed with solely VFA, black (B) and white (W) granules developed; in the reactor fed with a mixture of 90% VFA and 10% sucrose, three types of granules i.e., B, W, and grey (G) granules could be seen; in the reactor fed with 70% VFA and 30% sucrose, only W and G granules were found. The granular sludge yield increased proportional to the amount of sucrose COD. At steady-state performance of the reactors, specific acidogenic (SAA) and methanogenic (SMA) activity tests on these granules revealed that B granules had the highest SMA with low SAA. The W granules had very high SMA with low SAA. G granules gave the highest SAA with a considerable SMA. Measurement of coenzyme F420 revealed that B granules consist mainly of acetoclastic methanogens. The fore-mentioned tests were supplemented with analyses of the wash-out cells present in the reactor effluent and the results suggested that acidogens, if present, prevail at the granule surface. The B granules were particularly rich in Ca, Mn, and Zn minerals. The size distribution analysis showed that the granule diameter increased in the following order: B相似文献   

14.
The upflow anaerobic sludge blanket (UASB) reactor was evaluated for its efficacy in decolourization and reduction in chemical oxygen demand (COD) of real textile wastewater (RTW) under different operational conditions. The efficiency of UASB reactor in reducing COD was found to be over 90%. Over 92% of colour removal due to biodegradation was achieved. The activities of the anaerobic granules were not affected during the treatment of textile wastewater. Cocci-shaped bacteria were the dominant group over Methanothrix like bacteria in textile wastewater treatment. Alkalinity, volatile fatty acids (VFA) content and pH in effluents indicated that the anaerobic process was not inhibited by textile wastewater. It is concluded that UASB reactor system can effectively be used in the treatment of textile wastewater for the removal of colour and in the reduction of COD.  相似文献   

15.
The influence of pH shocks on the trace metal dynamics and performance of methanol fed upflow anaerobic granular sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with metal pre-loaded granular sludge (1mM Co, Ni and Fe; 30°C; 96h) at an organic loading rate (OLR) of 5gCOD l reactor–1d–1. One UASB reactor (R1) was inoculated with sludge that originated from a full scale reactor treating alcohol distillery wastewater, while the other reactor (R2) was inoculated with sludge from a full scale reactor treating paper mill wastewater. A 30h pH shock (pH 5) strongly affected the metal retention dynamics within the granular sludge bed in both reactors. Iron losses in soluble form with the effluent were considerable: 2.3 and 2.9% for R1 and R2, respectively, based on initial iron content in the reactors, while losses of cobalt and nickel in soluble form were limited. Sequential extraction of the metals from the sludge showed that cobalt, nickel, iron and sulfur were translocated from the residual to the organic/sulfide fraction during the pH shock in R2, increasing 34, 47, 109 and 41% in the organic/sulfide fraction, respectively. This is likely due to the modification of the iron sulfide precipitate stability, which influences the extractability of iron and trace metals. Such a translocation was not observed for the R1 sludge during the first 30h pH shock, but a second 4day pH shock induced significant losses of cobalt (18%), iron (29%) and sulfur (29%) from the organic/sulfide fraction, likely due to iron sulfide dissolution and concomitant release of cobalt. After the 30h pH shock, VFA accumulated in the R2 effluent, whereas both VFA and methanol accumulated in R1 after the 4day pH shock. The formed VFA, mainly acetate, were not converted to methane due to the loss of methanogenic activity of the sludge on acetate. The VFA accumulation gradually disappeared, which is likely to be related to out-competition of acetogens by methanogens. Zinc, copper and manganese supply did not have a clear effect on the acetate removal and methanol conversion, but zinc may have induced the onset of methanol degradation after day 152 in R1.  相似文献   

16.
Up-flow anaerobic sludge blanket (UASB) reactors are being used with increasing regularity all over the world, especially in India, for a variety of wastewater treatment operations. Consequently, there is a need to develop methodologies enabling one to determine UASB reactor performance, not only for designing more efficient UASB reactors but also for predicting the performance of existing reactors under various conditions of influent wastewater flows and characteristics. This work explores the feasibility of application of an artificial neural network-based model for simulating the performance of an existing UASB reactor. Accordingly, a neural network model was designed and trained to predict the steady-state performance of a UASB reactor treating high-strength (unrefined sugar based) wastewater. The model inputs were organic loading rate, hydraulic retention time, and influent bicarbonate alkalinity. The output variables were one or more of the following, effluent substrate concentration (Se), reactor bicarbonate alkalinity, reactor pH, reactor volatile fatty acid concentration, average gas production rate, and percent methane content of the gas. Training of the neural network model was achieved using a large amount of experimentally obtained reactor performance data from the reactor mentioned above as the training set. Training was followed by validation using independent sets of performance data obtained from the same UASB reactor. Subsequently, simulations were performed using the validated neural network model to determine the impact of changes in parameters like influent chemical oxygen demand (COD) concentration and hydraulic retention time on the reactor performance. Simulation results thus obtained were carefully analyzed based on qualitative understanding of UASB process and were found to provide important insights into key variables that were responsible for influencing the working of the UASB reactor under varying input conditions.  相似文献   

17.
The toxicity of formaldehyde (FA) in batch assays, using volatile fatty acids (VFA) as co-substrate, and the continuous anaerobic treatment of wastewaters containing FA in upflow anaerobic sludge blanket (UASB) reactors was investigated. In batch studies, FA exerted a 50% methanogenic toxicity on VFA at concentrations of around 100 mg/l, 2.5 times lower than values reported with sucrose. Although at FA concentrations higher than 200 mg/l methanogenesis was completely inhibited, a partial recovery of the bacterial activity was observed after 250 h when the FA had been removed from the medium. The continuous anaerobic degradation of FA at concentrations up to 2 g/l, using 1.6 g/l of glucose as co-substrate, was studied in a UASB reactor. A stable and efficient operation was observed at organic loading rates (OLR) of 6.0 g COD/l·d and with a COD/FA ratio as low as 1.4. A synthetic substrate with the same characteristics as the effluents produced during fibreboard adhesives manufacturing (based on urea-FA), i.e. 0.95 g FA/l and 0.35 g urea/l, was treated in a UASB reactor. The applied OLR and nitrogen loading rate (NLR) were 3.45 g COD/l·d and 0.58 g N/l·d, respectively. COD removal efficiencies were maintained at 90–95%, FA and urea being completely degraded.  相似文献   

18.
Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions.  相似文献   

19.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

20.
The effect of starch addition on the microbial composition and the biological conversion was investigated using two upflow anaerobic sludge bracket (UASB) reactors treating methanolic wastewater: one reactor was operated with starch addition, and another reactor was operated without starch addition. Approximately 300 days of operation were performed at 30 kg COD/m3/d, and then, the organic load of the reactors was gradually increased to 120 kg COD/m3/d. Successful operation was achieved at 30 kg COD/m3/d in both reactors; however, the methanol-fed reactor did not perform well at 120 kg COD/m3/d while the methanol-starch-fed reactor did. The granule analysis revealed the granule developed further only in the methanol-starch-fed reactor. The results of the microbial community analysis revealed more Methanosaeta cells were present in the methanol-starch-fed reactor, suggesting the degradation of starch produced acetate as an intermediate, which stimulated the growth of Methanosaeta cells responsible for the extension of granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号