首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

2.
Dialysis culture was used to investigate the extent to which growth inhibition in bacterial cultures may be caused by accumulation of metabolites. Escherichia coli B was grown in a glucose/salts medium. A concentrated nutrient solution was pumped at a constant rate into the growing culture to ensure that growth was not limited by exhaustion of nutrients. In this way the only difference between growth conditions in dialysis and non-dialysis cultures was the transfer of dialysable metabolites from the culture vessel to the reservoir in the dialysis culture system. By adjusting the glucose concentration in the feed and maintaining a constant rate of feeding, glucose-limited growth could be achieved. Under these conditions, with oxygen in excess, bacterial yields of 140 to 150 g dry wt l-1 were obtained in dialysis culture compared with 30 to 40 g l-1 in non-dialysis culture. The high yields in dialysis culture depended on the removal of end-products of glucose metabolism. Growth inhibition was demonstrated to be the result of the combined influence of acetate, lactate, pyruvate, succinate, propionate and isobutyrate in concentrations found at the end of growth in non-dialysis cultures of Escherichia coli B.  相似文献   

3.
An on-line technique, based on measuring the increase in pressure due to CO2 release in a closed air-tight reactor, was used to evaluate the fermentation of lactate by propionibacteria. The method was applied to batch cultures of Propionibacterium shermanii grown in yeast extract/sodium lactate medium containing lactate as a carbon source under micro-aerophilic conditions. Gas pressure evolution was compared both with substrate consumption and metabolites production and with acidification and growth. Linear relationships were found between gas pressure variation, lactate consumption and propionate and acetate production. The technique also enabled the evaluation of total CO2 produced, by taking account of pressure, oxygen and pH measurements. These results tend to show that this simple and rapid method could be useful to monitor propionic acid bacteria growth.  相似文献   

4.
Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese.  相似文献   

5.
Acidogenic fermentation of lactose was carried out in a continuous stirred reactor with a mixed anaerobic culture. From the variation of the reactor products with pH and dilution rate two possible carbon flow schemes were proposed for the reaction. In both schemes the carbon flow from pyruvate to butyrate and lactate was assumed to occur in parallel. A change in gas composition and in product concentrations at dilution rates between 0.1 and 0.15 h(-1) for pH levels between 4.5 and 6.0 was ascribed to a shift in microbial population. To clarify the mechanism radiotracer tests were made using [U-(14)C]-butyrate, [2-(14)C]-propionate and [U-(14)C]-lactate to determine the path of carbon flow during acidogenesis of lactose using a mixed culture. At a dilution rate between 0.1 and 0.15 h(-1) and pH from 4.5 to 6.0 a rise in the lactate concentration in the product was shown to be due to a microbial population shift which disabled the conversion of lactate to other intermediary metabolites. It was also found that the flow of carbon from pyruvate to butyrate and lactate occurred by parallel pathways. Also, in the presence of hydrogen reducing methanogens, lactate was almost completely converted to acetate and not propionate. Butyrate was found to be converted to acetate at a slow rate as long as hydrogen reducing methanogens were present. The role played by propionibacteria in this lactose acidogenic eocosystem was minor. From the carbon flow model it can be concluded that lactate is the most suitable marker for optimizing an acidogenic reactor in a two-phase biomethanation process.  相似文献   

6.
The genus Pectinatus includes strictly anaerobic Gram-negative non-spore-forming mesophilic bacteria often referred to as beer-spoilage bacteria. Pectinatus frisingensis was chosen as the reference strain. The organisms were grown in batch cultures under stringent anaerobic conditions in a synthetic medium and with pH regulation. Various glucose and lactate concentrations were used, and a low inoculum reproduced spoilage conditions in bottled beer. Propionate and acetate are the major compounds responsible for the off-flavour of beer. Gompertz curves were fitted to acid-biomass production and glucose consumption; thereby the lag-phase, production rate and final concentrations were derived. Volatile fatty acids production began 19 h after biomass growth. There was no lineareffect of substrate on final concentration of propionate, acetate and biomass. An additive model is proposed for the prediction of bacterial growth and acid production on both glucose and lactate.  相似文献   

7.
Lactococcus lactis was grown in a simple synthetic medium with glucose as substrate, enabling the precise quantification of each nutrient's contribution to growth. As expected, for the growth of lactic acid bacteria, the growth rate decreased progressively during the cultivation after a short period of exponential growth. End-products of fermentation, predominantly lactate and in minor amounts formate, acetate and ethanol, accumulated within the medium. Growth of the bacterium in fresh media supplemented with these end-products showed that the concentrations attained in the fermentor had no significant influence on the growth rate. As regards nutrients, vitamins and magnesium were never limiting during the culture. On the other hand, amino acid concentrations decreased, some of them being totally consumed and exhausted from the medium before growth ceased. However, growth in reconstituted media constructed with the amino acid concentrations remaining at different times of cultivation showed that amino acid depletion could not account for the observed growth decrease. Batch culture supernatant fluid was used as cultivation medium. Growth rates observed in supernatant cultures supplemented with various nutrients, compared to non-supplemented supernatant, showed that no addition improved growth. Finally, it was concluded that in the experimental conditions used in this study, growth inhibition was predominantly due to phenomena other than lactate inhibition and nutritional limitations, and hence associated with unidentified compounds produced in the fermentation.  相似文献   

8.
In lactic acid bacteria, pentoses are metabolized via the phosphoketolase pathway, which catalyzes the cleavage of D-xylulose-5-phosphate to equimolar amounts of glyceraldehyde 3-phosphate and acetylphosphate. Hence the yield coefficient of lactate from pentose does not exceed 1.0 mol/mol, while that of Lactococcus lactis IO-1(JCM7638) at high D-xylose concentrations often exceeds the theoretical value. This suggests that, in addition to the phosphoketolase pathway, L. lactisIO-1 may possess another metabolic pathway that produces only lactic acid from xylose. In the present study, the metabolism of xylose in L. lactisIO-1 was deduced from the product formation and enzyme activities of L. lactisIO-1 in batch culture and continuous culture. During cultivation with xylose concentrations above ca. 50 g/l, the yield coefficient of L-lactate exceeded 1.0 mol/mol while those of acetate, formate and ethanol were very low. At xylose concentrations less than 5 g/l, acetate, formate and ethanol were produced with yield coefficients of about 1.0 mol/mol, while L-lactate was scarcely produced. In cells grown at high xylose concentrations, a marked decrease in the specific activities of phosphoketolase and pyruvate formate lyase (PFL), and an increase in those of transketolase and transaldolase were observed. These results indicate that in L. lactisIO-1 xylose may be catabolized by two different pathways, the phosphoketolase pathway yielding acetate, formate and ethanol, and the pentose phosphate (PP)/glycolytic pathway which converts xylose to L-lactate only. Furthermore, it was deduced that the change in the xylose concentration in the culture medium shifts xylulose 5-phosphate metabolism between the phosphoketolase pathway and the PP/glycolytic pathway in L. lactisIO-1, and pyruvate metabolism between cleavage to acetyl-CoA and formic acid by PFL and the reduction to L-lactate by lactate dehydrogenase.  相似文献   

9.
Summary The effects of the aeration rate, the pH value, the temperature of the culture medium and of the age of cells on the excretion of metabolites by mutant strains of Alcaligenes eutrophus were studied. With lactate or gluconate as substrates, ethanol, 3-hydroxybutanoate, succinate, cis-aconitate, 2-oxo-3-methylbutanoate and 2-oxoglutarate were excreted, each at a distinct low aeration rate. Maximum concentrations of metabolites were found at pH 7.0 at 30°C when ammonia was growth limiting and the carbon substrate was present in excess. Excretion occurred only by viable intact cells.  相似文献   

10.
1. The influence of ethanol on the redox level of the redox pair lactate/pyruvate has been studied in experiments with rat-liver slices. 2. Ethanol had no effect on oxygen consumption but strongly depressed carbon dioxide formation. On the assumption that ethanol is oxidized to acetate in the liver slices, it could be calculated that most of the oxygen that disappeared was consumed in this reaction. 3. Addition of ethanol to the incubation medium increased the lactate/pyruvate ratio and when all the ethanol had been oxidized the redox value decreased to the normal again. Ethanol depressed the pyruvate concentration, whereas the lactate concentration was not much influenced. 4. Acetaldehyde in the concentrations present during ethanol oxidation did not influence the lactate/pyruvate ratio. Higher concentrations, however, increased the redox state. 5. Acetate in the concentrations present during ethanol oxidation in the experiments, and also in higher concentrations, did not influence the lactate/pyruvate ratio. 6. The mechanism by which ethanol influences the lactate/pyruvate ratio is discussed.  相似文献   

11.
The effect of different concentrations of nitrogen and phosphorus on extracellular release was investigated. Phosphorus induced the enhanced extracellular release of metabolites by Chlorella vulgaris. No influence of nitrogen on extracellular release was observed. In the initial stages of C. vulgaris culture the algae release was observed. In the initial stages of C. vulgaris culture the algae release compounds readily assimilated by the accompanying bacteria, hence the observed drop of percentage of extracellular release (PER) in culture medium caused by the bacteria. Both, the glycolic acid and the products of photoassimilation released to the environment in the first stages of cultivation were assimilated by the bacteria accompanying-algae at a similar rate. The ageing of C. vulgaris culture resulted in the accumulation of extracellularly released metabolites and increase of PER. These products were not assimilated by the bacteria present in the algal culture.  相似文献   

12.
Previous results indicated poor sugar consumption and early inhibition of metabolism and growth when Clostridium cellulolyticum was cultured on medium containing cellobiose and yeast extract. Changing from complex medium to a synthetic medium had a strong effect on (i) the specific cellobiose consumption, which was increased threefold; and (ii) the electron flow, since the NADH/NAD+ ratios ranged from 0.29 to 2.08 on synthetic medium whereas ratios as high as 42 to 57 on complex medium were observed. These data indicate a better control of the carbon flow on mineral salts medium than on complex medium. By continuous culture, it was shown that the electron flow from glycolysis was balanced by the production of hydrogen gas, ethanol, and lactate. At low levels of carbon flow, pyruvate was preferentially cleaved to acetate and ethanol, enabling the bacteria to maximize ATP formation. A high catabolic rate led to pyruvate overflow and to increased ethanol and lactate production. In vitro, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and ethanol dehydrogenase levels were higher under conditions giving higher in vivo specific production rates. Redox balance is essentially maintained by NADH-ferredoxin reductase-hydrogenase at low levels of carbon flow and by ethanol dehydrogenase and lactate dehydrogenase at high levels of carbon flow. The same maximum growth rate (0.150 h-1) was found in both mineral salts and complex media, proving that the uptake of nutrients or the generation of biosynthetic precursors occurred faster than their utilization. On synthetic medium, cellobiose carbon was converted into cell mass and catabolized to produce ATP, while on complex medium, it served mainly as an energy supply and, if present in excess, led to an accumulation of intracellular metabolites as demonstrated for NADH. Cells grown on synthetic medium and at high levels of carbon flow were able to induce regulatory responses such as the production of ethanol and lactate dehydrogenase.  相似文献   

13.
The effect of low substrate concentrations on the metabolic pathway and sulfur isotope fractionation during sulfate reduction was investigated for Archaeoglobus fulgidus strain Z. This archaeon was grown in a chemostat with sulfate concentrations between 0.3 mM and 14 mM at 80 degrees C and with lactate as the limiting substrate. During sulfate reduction, lactate was oxidized to acetate, formate, and CO2. This is the first time that the production of formate has been reported for A. fulgidus. The stoichiometry of the catabolic reaction was strongly dependent on the sulfate concentration. At concentrations of more than 300 microM, 1 mol of sulfate was reduced during the consumption of 1 mol of lactate, whereas only 0.6 mol of sulfate was consumed per mol of lactate oxidized at a sulfate concentration of 300 microM. Furthermore, at low sulfate concentrations acetate was the main carbon product, in contrast to the CO2 produced at high concentrations. We suggest different pathways for lactate oxidation by A. fulgidus at high and low sulfate concentrations. At about 300 microM sulfate both the growth yield and the isotope fractionation were limited by sulfate, whereas the sulfate reduction rate was not limited by sulfate. We suggest that the cell channels more energy for sulfate uptake at sulfate concentrations below 300 to 400 microM than it does at higher concentrations. This could explain the shift in the metabolic pathway and the reduced growth yield and isotope fractionation at low sulfate levels.  相似文献   

14.
The intrinsic fermentation kinetics of lactose in acidogenic biofilms were investigated in situ in a continuous flow fermentor at 35 degrees C and pH 4.6. The external and internal mass transfer resistances to lactose molecules from bulk solution to inside the biofilms were experimentally minimized or eliminated in a thin biofilm and recycled medium. In a chemically defined culture medium, the immobilized acidogens converted lactose mainly to acetate and butyrate; the minor products included ethanol. propionate, lactate, and hydrogen. The utilization rate of lactose, as a function of lactose concentration in the fermentor, can be described by a Michaelis-Menten equation, as can the formation rates of acetate, butyrate, and ethanol. The production rates of propionate and lactate had a liner relationship with lactose concentration under the experimental conditions. The low pH (4.6) of culture medium could depress the formation of propionate, and intermediate which is most difficulty digested by acetogenic bacteria located in the second fermentor in a two-phase process. Production rate of acetate quickly reached a constant, and additional utilization of lactose produced more butyrate and other minor products. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

16.
Under the standard conditions of culture, Fru-2,6-P2 level in HT29 cells is transitorily increased as a consequence of medium change; the peak value occurs after 2 hr, followed by a gradual return to a basal value (40 pmol/mg protein) which is maintained as long as medium glucose concentration stands above 2 mM. A 20 hr glucose deprivation lowers Fru-2,6-P2 level to trace value, but, when glucose is reintroduced, the peak value is much higher; large Fru-2,6-P2 accumulation is correlated with higher rates of glucose uptake and lactate release, which suggests an activation of glycolysis at the level of phosphofructokinase-1. Fru-2,6-P2 level depends on the glucose concentration within the range of 0 to 5 mM. At this concentration and above, maximal effect is reached. Previous glucose deprivation renders the Fru-2,6-P2 forming system more sensitive to glucose. When given instead of glucose, fructose enters the glycolytic pathway and produces same effect as glucose on the Fru-2,6-P2 level. Galactose turns it to almost zero which coincides with low glycolytic rate. Acidity of the culture medium favorishes the Fru-2,6-P2 formation; however, change in pH cannot explain the variations of Fru-2,6-P2 level observed under the standard culture conditions. Lactate concentrations over 10 mM in the medium are found to significantly inhibit the Fru-2,6-P2 producing system. Therefore, lactate accumulation in the medium could be an important factor controlling Fru-2,6-P2 level during standard cell culture.  相似文献   

17.
AIMS: Combinations of sodium chloride and acid are frequently used to inhibit growth of spoilage and pathogenic bacteria in food. The influence of differing sodium chloride, lactate and pH values on the growth of stressed and unstressed cells of a non-toxigenic strain of Escherichia coli O157:H7 was studied. METHODS AND RESULTS: At pH 5.5 or 6.0, there was little or no effect on the growth rate in the presence of lactate and/or sodium chloride, but the lag times were longer as the lactate concentration increased. At pH 5.0, in the absence of sodium chloride, increasing the lactate concentration increased the growth rate and the lag time; no growth occurred in the presence of 1.5 g 100 g(-1) lactate. In the presence of 4-6 g 100 g(-1) sodium chloride, growth occurred at 1.5 g 100 g(-1) lactate. The growth rate was similar at all lactate concentrations. CONCLUSION: The results demonstrate that the presence of sodium chloride promoted growth of E. coli O157:H7, especially under stressful conditions of low pH. Significance and Impact of the Study: These findings could have implications for the use of acid and sodium chloride as a preservation treatment for the inhibition of E. coli O157:H7 in food.  相似文献   

18.
The growth of nine species of Bifidobacterium on media containing glucose, xylose, xylooligosaccharides (XOS), xylan or fructooligosaccharides (FOS) as the sole carbon source were compared in pure culture. The bifidobacteria differed in fermentation profiles when tested on different carbohydrates. All species grew to their highest final optical density (OD) on a glucose containing medium, with the exception of B. catenulatum which demonstrated a preference for xylose over glucose, and XOS over FOS. B. bifidum grew to the highest OD on XOS compared to xylose suggesting a specific transport system for the oligosaccharide over the monomer. This is consistent with a lack of beta-xylosidase activity present in the culture medium. Lactate, formate and acetate levels were determined and the ratios of these metabolites altered between and within species growing on different carbohydrates. In general, high lactate production correlated with low formate production and low lactate concentrations were obtained at higher levels of formate. Bifidobacteria may alter their metabolic pathways based upon the carbohydrates that are available for their use.  相似文献   

19.
Campylobacter sputorum subspecies bubulus was grown in batch cultures in which the dissolved oxygen tension (d.o.t) was maintained at various constant levels. At a range of d.o.t. from 0.002 to 0.05 atm, which allowed good growth (mean generation time approximately 1.5 h), L-lactate was preferentially consumed before D-lactate. L-lactate oxidation was accompanied by equimolar acetate production during exponential growth. A value for YL-lactate (g dry weight bacteria per mol L-lactate) of 54 was determined. Net acetate production stopped when C. sputorum started to use D-lactate after consumption of L-lactate. When a culture growing exponentially at the expense of L-lactate was shifted from a d.o.t. of 0.02 atm to a d.o.t. of 0.15 atm, growth was impaired, and L-lactate consumption and corresponding acetate production diminished. This decrease correlated with a loss of lactate dehydrogenase activity after the shift. Campylobacter sputorum appeared to possess cytochromes of the b- and c-type and a carbon monoxide-binding pigment. Evidence is given that the principal site of oxygen damage is lactate dehydrogenase rather than the cytochrome chain.  相似文献   

20.
1. Transient and steady-state changes caused by acetate utilization were studied in perfused rat heart. The transient period occupied 6min and steady-state changes were followed in a further 6min of perfusion. 2. In control perfusions glucose oxidation accounted for 75% of oxygen utilization; the remaining 25% was assumed to represent oxidation of glyceride fatty acids. With acetate in the steady state, acetate oxidation accounted for 80% of oxygen utilization, which increased by 20%; glucose oxidation was almost totally suppressed. The rate of tricarboxylate-cycle turnover increased by 67% with acetate perfusion. The net yield of ATP in the steady state was not altered by acetate. 3. Acetate oxidation increased muscle concentrations of acetyl-CoA, citrate, isocitrate, 2-oxoglutarate, glutamate, alanine, AMP and glucose 6-phosphate, and lowered those of CoA and aspartate; the concentrations of pyruvate, ATP and ADP showed no detectable change. The times for maximum changes were 1min, acetyl-CoA, CoA, alanine and AMP; 6min, citrate, isocitrate, glutamate and aspartate; 2-4min, 2-oxoglutarate. Malate concentration fell in the first minute and rose to a value somewhat greater than in the control by 6min. There was a transient and rapid rise in glucose 6-phosphate concentration in the first minute superimposed on the slower rise over 6min. 4. Acetate perfusion decreased the output of lactate, the muscle concentration of lactate and the [lactate]/[pyruvate] ratio in perfusion medium and muscle in the first minute; these returned to control values by 6min. 5. During the first minute acetate decreased oxygen consumption and lowered the net yield of ATP by 30% without any significant change in muscle ATP or ADP concentrations. 6. The specific radioactivities of cycle metabolites were measured during and after a 1min pulse of [1-(14)C]acetate delivered in the first and twelfth minutes of acetate perfusion. A model based on the known flow rates and concentrations of cycle metabolites was analysed by computer simulation. The model, which assumed single pools of cycle metabolites, fitted the data well with the inclusion of an isotope-exchange reaction between isocitrate and 2-oxoglutarate+bicarbonate. The exchange was verified by perfusions with [(14)C]bicarbonate. There was no evidence for isotope exchange between citrate and acetyl-CoA or between 2-oxoglutarate and malate. There was rapid isotope equilibration between 2-oxoglutarate and glutamate, but relatively poor isotope equilibration between malate and aspartate. 7. It is concluded that the citrate synthase reaction is displaced from equilibrium in rat heart, that isocitrate dehydrogenase and aconitate hydratase may approximate to equilibrium, that alanine aminotransferase is close to equilibrium, but that aspartate transamination is slow for reasons that have yet to be investigated. 8. The slow rise in citrate concentration as compared with the rapid rise in that of acetyl-CoA is attributed to the slow generation of oxaloacetate by aspartate aminotransferase. 9. It is proposed that the tricarboxylate cycle may operate as two spans: acetyl-CoA-->2-oxoglutarate, controlled by citrate synthase, and 2-oxoglutarate-->oxaloacetate, controlled by 2-oxoglutarate dehydrogenase; a scheme for cycle control during acetate oxidation is outlined. The initiating factors are considered to be changes in acetyl-CoA, CoA and AMP concentrations brought about by acetyl-CoA synthetase. 10. Evidence is presented for a transient inhibition of phosphofructokinase during the first minute of acetate perfusion that was not due to a rise in whole-tissue citrate concentration. The probable importance of metabolite compartmentation is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号