首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background and aims

The effect of plant species on their root-associated arbuscular mycorrhizal (AM) fungi is well studied, but how this effect operates at the cultivar level remains poorly understood. This study investigates how wheat cultivars shape their AM fungal communities.

Methods

Twenty-one new wheat cultivars were traditionally cultivated in a dryland of northwestern China, and their agronomic traits, soil characteristics and the abundance and community composition of AM fungi were measured.

Results

Both spore community in soils and AM fungal phylotypes inside roots were significantly influenced by cultivar even though hyphal abundance, spore density and AM fungal diversity were similar across cultivars. Three out of 16 AM fungal phylotypes interacted with most cultivars, whilst some phylotypes preferred to colonize cultivars with similar agronomic traits. Six wheat cultivars, all which had hosted 6 AM fungal phylotypes, seemed to be generalists. Nestedness analysis and stochastic model fitting revealed that the AM fungal communities colonizing roots were codetermined by deterministic and stochastic processes.

Conclusions

A complex pattern of cultivar-AM fungal interactions was observed in this study, and our results highlight that the host effect on the community assembly of AM fungi could be operating on the level of plant cultivar.  相似文献   

2.

Aims

In the long term absence of catastrophic disturbance ecosystem retrogression occurs, and this is characterized by reduced soil fertility, and impairment of plant biomass and productivity. The response of plant traits to retrogression remains little explored. We investigated how changes plant traits and litter decomposability shift during retrogression for dominant trees and understory shrubs.

Methods

We characterized changes in intraspecific, interspecific and community-averaged values of plant traits and litter decomposability, for six abundant species across thirty lake islands in boreal forest that undergo retrogression with increasing time since fire.

Results

For understory shrubs, trait values and litter decomposability often changed as soil fertility declined in a manner reflective of greater conservation (versus acquisition) of nutrients, particularly at the interspecific and whole community levels. Such responses were seldom observed for trees, meaning that trees and shrubs show a decoupled response to declining soil fertility during retrogression.

Conclusions

Our results only partially agree with previous studies on temperate and subtropical retrogressive chronosequences. Because traits of only shrubs were responsive, they also highlight that impairment of belowground ecosystem processes during retrogression is primarily driven by changes in the trait spectra of understory vegetation rather than that of the trees.  相似文献   

3.

Background and aims

Soil nutrients and light have major effects on the economics of arbuscular mycorrhizal (AM) symbioses. This study tests the main and interactive effects of soil fertility and light on AM fungal community.

Methods

We conducted a 3 year mesocosm experiment with a full two factorial design: light (full light or shade) and soil fertility (unfertilized or fertilized), on the Qinghai-Tibetan Plateau. Plant traits, soil characteristics and the AM fungal communities inside roots and in soils were measured.

Results

Shade reduced AM colonization of roots, fertilization reduced the hyphal abundance in the soil, and both factors reduced species richness of AM fungi inside plant roots. Fertilization exacerbated the negative impacts of shade on AM fungal abundance and diversity. We observed 15 phylotypes of AM fungi inside roots and ten morphotypes of AM fungal spores in the soil. Taxa responded differently to shade and fertilization and there was little congruence between the responses of fungi inside the roots and in the spore community.

Conclusions

Our findings indicate that both shade and fertilization reduce the abundance of AM fungi, but the two factors have different effects on the quality of plant roots as habitat for AM fungi.  相似文献   

4.

Purpose

Roots are inhabited by a broad range of fungi, including pathogens and mycorrhizal fungi, with functional traits related to plant health and nutrition. Management of these fungi in agroecosystems requires profound knowledge about their ecology. The main objective of this study was to examine succession patterns of root-associated fungi in pea during a full plant growth cycle.

Methods

Plants were grown in pots with field soil in a growth chamber under controlled conditions. Fungal communities in pea roots were analyzed at different plant growth stages including the vegetative growth, flowering and senescence, using 454 pyrosequencing.

Results

One hundred and twenty one non-singleton operational taxonomic units (OTUs) representing fungal species were detected. Pathogenic and arbuscular mycorrhizal fungi dominated during the vegetative growth stage, whereas saprotrophic fungi dominated during plant senescence.

Conclusions

In conclusion, the results from the present study demonstrated highly diverse fungal communities in pea roots with clear succession patterns related to fungal traits.  相似文献   

5.

Background and aims

Spatial distribution of soil nutrients (soil heterogeneity) and availability have strong effects on above- and belowground plant functional traits. Although there is ample evidence on the tight links between functional traits and ecosystem functioning, the role played by soil heterogeneity and availability as modulators of such relationship is poorly known.

Methods

We conducted a factorial experiment in microcosms containing grasses, legumes and non-legume forbs communities differing in composition to evaluate how soil heterogeneity and availability (50 and 100 mg N) affect the links between traits and ecosystem functioning. Community-aggregated specific leaf area (SLAagg) and specific root length (SRLagg) were measured as both relevant response traits to soil heterogeneity and availability, and significant effect traits affecting ecosystem functioning (i.e., belowground biomass, β-glucosidase and acid phosphatase activities, and in situ N availability rate).

Results

SRLagg was negatively and significantly associated to β-glucosidase, phosphatase and N availability rate in the high nutrient availability and heterogeneous distribution scenario. We found a significant negative relationship between SLAagg and availability rate of mineral-N under low nutrient availability conditions.

Conclusions

Soil heterogeneity modulated the effects of both traits and nutrient availability on ecosystem functioning. Specific root length was the key trait associated with soil nutrient cycling and belowground biomass in contrasted heterogeneous soil conditions. The inclusion of soil heterogeneity into the trait-based response-effect framework may help to scale from plant communities to the ecosystem level.  相似文献   

6.

Background and aims

Specific associations exist between plant species and the soil microbial community and these associations vary between habitat types and different plant groups. However, there is evidence that the associations are highly specific. Hence, we aimed to determine the specificity of plant-microbe relationships amongst co-occurring grass species in a temperate grassland.

Methods and results

We examined the broad microbial groups of bacteria and fungi as well as a specific fungal group, the arbuscular mycorrhizal community amongst two dominant C3 and C4 species and one sub-dominant C3 species using terminal restriction fragment length polymorphism (T-RFLP) analysis. We found that the two dominant species were more similar to each other in their bacterial and arbuscular mycorrhizal community composition than either was to the sub-dominant species, but not in their fungal community composition. We also found no clear evidence that those differences were directly linked to soil chemical properties.

Conclusions

Our results demonstrate that co-occurring grass species have a distinct soil microbial community and T-RFLP analysis is able to detect plant species effect on the microbial community composition on an extremely local scale, providing an insight into the differences in the response of bacterial, fungal and arbuscular mycorrhizal communities to different, but similar and co-occurring, plant species.  相似文献   

7.

Background and aims

We determined the relationship between site N supply and decomposition rates with respect to controls exerted by environment, litter chemistry, and fungal colonization.

Methods

Two reciprocal transplant decomposition experiments were established, one in each of two long-term experiments in oak woodlands in Minnesota, USA: a fire frequency/vegetation gradient, along which soil N availability varies markedly, and a long-term N fertilization experiment. Both experiments used native Quercus ellipsoidalis E.J. Hill and Andropogon gerardii Vitman leaf litter and either root litter or wooden dowels.

Results

Leaf litter decay rates generally increased with soil N availability in both experiments while belowground litter decayed more slowly with increasing soil N. Litter chemistry differed among litter types, and these differences had significant effects on belowground (but not aboveground) decay rates and on aboveground litter N dynamics during decomposition. Fungal colonization of detritus was positively correlated with soil fertility and decay rates.

Conclusions

Higher soil fertility associated with low fire frequency was associated with greater leaf litter production, higher rates of fungal colonization of detritus, more rapid leaf litter decomposition rates, and greater N release in the root litter, all of which likely enhance soil fertility. During decomposition, both greater mass loss and litter N release provide mechanisms through which the plant and decomposer communities provide positive feedbacks to soil fertility as ultimately driven by decreasing fire frequency in N-limited soils and vice versa.  相似文献   

8.

Background

In the Mediterranean climate, plants have evolved under conditions of low soil-water and nutrient availabilities and have acquired a series of adaptive traits that, in turn exert strong feedback on soil fertility, structure, and protection. As a result, plant-soil systems constitute complex interactive webs where these adaptive traits allow plants to maximize the use of scarce resources.

Scope

It is necessary to review the current bibliography to highlight the most know characteristic mechanisms underlying Mediterranean plant-soil feed-backs and identify the processes that merit further research in order to reach an understanding of the plant-soil feed-backs and its capacity to cope with future global change scenarios. In this review, we characterize the functional and structural plant-soil relationships and feedbacks in Mediterranean regions. We thereafter discuss the effects of global change drivers on these complex interactions between plants and soil.

Conclusions

The large plant diversity that characterizes Mediterranean ecosystems is associated to the success of coexisting species in avoiding competition for soil resources by differential exploitation in space (soil layers) and time (year and daily). Among plant and soil traits, high foliar nutrient re-translocation and large contents of recalcitrant compounds reduce nutrient cycling. Meanwhile increased allocation of resources to roots and soil enzymes help to protect against soil erosion and to improve soil fertility and capacity to retain water. The long-term evolutionary adaptation to drought of Mediterranean plants allows them to cope with moderate increases of drought without significant losses of production and survival in some species. However, other species have proved to be more sensitive decreasing their growth and increasing their mortality under moderate rising of drought. All these increases contribute to species composition shifts. Moreover, in more xeric sites, the desertification resulting from synergic interactions among some related process such as drought increases, torrential rainfall increases and human driven disturbances is an increasing concern. A research priority now is to discern the effects of long-term increases in atmospheric CO2 concentrations, warming, and drought on soil fertility and water availability and on the structure of soil communities (e.g., shifts from bacteria to fungi) and on patching vegetation and root-water uplift (from soil to plant and from soil deep layers to soil superficial layers) roles in desertification.  相似文献   

9.

Background and aims

Machine mowing, mimicking the traditional hand mowing, is often used as a successful management tool to maintain grassland biodiversity, but few studies have investigated the long-term effects of traditional versus mechanical mowing of plant communities. Machine mowing as opposed to hand mowing causes soil compaction and reduction of soil aeration. In response, we expected strong effects on below-ground plant traits: root aerenchyma formation and superficial root growth, and no specific effects on aboveground traits. Effects were expected to be more pronounced in soils vulnerable to compaction.

Methods

We evaluated the changes in above- and belowground plant traits in a long-term (38-year) experiment with annual hand-mowing and machine-mowing management regimes on two different soil types: a coarse structured sandy soil and a finer structured sandy-organic soil

Results

Only on the organic soil, long-term machine mowing leads to lower soil aeration (more compacted soil) and a marked change in the belowground trait distribution of the plant community. Here we find a higher cover of superficially rooting species and marginally significant lower cover of species without morphological adaptations to soil hypoxia, but no effect on species with a high capacity of forming aerenchyma.

Conclusion

Mowing with heavy machines on soils vulnerable to compaction affect the vegetation according to changes in soil physical conditions. This is reflected in a shift towards communities with greater proportion of superficially rooting species. Our results illustrate the sensitivity of grasslands to slight changes in the management regime.  相似文献   

10.

Aims

To gain a better understanding of how rapidly microbial communities respond to different magnitudes of perturbation that mimic minor or catastrophic disturbances.

Methods

Two montane sites in the western Cascade Mountains of Oregon with adjacent areas of forest and meadow vegetation were studied. A reciprocal transplant experiment evaluated both minor (soil cores remaining in the same vegetation type) or more severe disturbance (soil cores transferred to a different vegetation type). The biomass and composition of the bacterial and fungal communities were measured for 2 years following the establishment of the experiment.

Results

Minor disturbance (coring) had little impact on microbial biomass but transferring between vegetation type showed greater fungal biomass in soil incubated in the forest environment. The composition of bacterial communities was not influenced by coring but responded strongly to transfers between vegetation sites, changing to reflect their new environment after 2 years. Fungal community composition responded somewhat to coring, probably from disrupting mycorrhizal fungal hyphae, but more strongly to being transferred to a new environment.

Conclusions

The response of the microbial community to major disturbance was rapid, showing shifts reflective of their new environment within 2 years, suggesting that microbial communities have the capacity to quickly adjust to catastrophic disturbances.  相似文献   

11.

Background

Ectomycorrhizal (ECM) fungi provide one of the main pathways for carbon (C) to move from trees into soils, where these fungi make significant contributions to microbial biomass and soil respiration.

Scope

ECM fungal species vary significantly in traits that likely influence C sequestration, such that forest C sequestration potential may be driven in part by the existing community composition of ECM fungi. Moreover, accumulating experimental data show that tree genotypes differ in their compatibility with particular ECM fungal species, i.e. mycorrhizal traits of forest trees are heritable. Those traits are genetically correlated with other traits for which tree breeders commonly select, suggesting that selection for traits of interest, such as disease resistance or growth rate, could lead to indirect selection for or against particular mycorrhizal traits of trees in forest plantations.

Conclusions

Altogether, these observations suggest that selection of particular tree genotypes could alter the community composition of symbiotic ECM fungi in managed forests, with cascading effects on soil functioning and soil C sequestration.  相似文献   

12.
Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co‐occurring ECM plant species (to control for host identity) in soils collected along a 2‐million‐year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis‐driven shifts in edaphic properties, particularly pH and resin‐exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long‐term ecosystem development, even within the same hosts. However, these changes could not be attributed to short‐term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer‐term ecosystem‐level feedback between soil, vegetation and ECM fungi during pedogenesis.  相似文献   

13.

Background and aims

Higher growth rate and morphological traits have been the major criteria for selecting trees in breeding programs. The symbiotic associations between P. pinaster and ectomycorrhizal fungi can be an effective approach to enhance plant development. The aim of this work was to assess whether the establishment of mycorrhizal symbiosis at nursery stage was affected by tree breeding.

Methods

Seeds of P. pinaster from a clonal population, designed to select for various traits, and from neighboring wild plants were inoculated with compatible ectomycorrhizal fungi: Suillus bovinus, Pisolithus tinctorius or Rhizopogon roseolus, and grown in individual cells containing forest soil, in a commercial forest nursery. Growth and nutritional traits, colonisation parameters and the fungal community established were assessed.

Results

R. roseolus and P. tinctorius were the most efficient isolates in promoting plant development. Inoculated selected saplings had an overall superior development than their wild counterparts, with up to a 4.9-fold in root dry weight and a 13.6-fold increase in the total number of ectomycorrhizal root tips. Differences in fungal community were revealed through the denaturing gradient gel electrophoresis profile of each treatment.

Conclusions

The results from our study suggest that the selected genotype benefits more from the mycorrhizal association and therefore this could be a valuable biotechnological tool for the nursery production of P. pinaster.  相似文献   

14.

Background & aims

Plants may have dissimilar effects on ecosystem processes because they possess different attributes. Given increasing biodiversity losses, it is important to understand which plant traits are key drivers of ecosystem functions. To address this question, we studied the response of two ecosystem functions that remove nitrogen (N) from wetland soils, the accumulation of N in plant biomass and denitrification potential (DNP), to variation in plant trait composition.

Methods

Our experiment manipulated plant composition in a riparian wetland. We determined relative importance of plant traits and environmental variables as predictors of each ecosystem function.

Results

We demonstrate that Water Use Efficiency (WUE) had a strong negative effect on biomass N. Root porosity and belowground biomass were negatively correlated with DNP. Trait ordination indicated that WUE was largely orthogonal to traits that maximized DNP.

Conclusions

These results indicate that plant species with different trait values are required to maintain multiple ecosystem functions, and provide a more mechanistic, trait-based link between the recent findings that higher biodiversity is necessary for multi-functionality. While we selected plant traits based on ecological theory, several of the plant traits were not good predictors of each ecosystem function suggesting the ecological theory linking traits to function is incomplete and requires strengthening.  相似文献   

15.

Background

It is established that plant communities show patterns of change linked to progressive and retrogressive stages of ecosystem development. It is not known, however, whether bacterial communities also show similar patterns of change associated with long-term ecosystem development.

Methods

We studied soil bacterial communities along a 6,500 year dune chronosequence under lowland temperate rain forest at Haast, New Zealand. Pyrosequencing of 16S rRNA genes was used to observe structural change in bacterial communities during the process of pedogenesis and ecosystem development.

Results

Bacterial communities showed patterns of change during pedogenesis, with the largest change during the first several hundred years after dune stabilization. The most abundant bacterial taxa were Alphaproteobacteria, Actinobacteria and Acidobacteria. These include taxa most closely related to nitrogen-fixing bacteria, and suggest heterotrophic nitrogen input may be important throughout the chronosequence. Changes in bacterial community structure were related to changes in several soil properties, including total phosphorus, C:N ratio, and pH. The Bacteroidetes, Actinobacteria, Cyanobacteria, Firmicutes, and Betaproteobacteria all showed a general decline in abundance as pedogenesis proceeded, while Acidobacteria, Alphaproteobacteria, and Plantctomycetes tended to increase as soils aged.

Conclusions

There were trends in the dynamics of bacterial community composition and structure in soil during ecosystem development. Bacterial communities changed in ways that appear to be consistent with a model of ecosystem progression and retrogression, perhaps indicating fundamental processes underpin patterns of below and above-ground community change during ecosystem development.  相似文献   

16.

Background and aims

Arbuscular mycorrhizal (AM) fungi play a significant role in P nutrition of crops in agriculture, but P accumulation in the soil, e.g., application of P-fertilizer, generally reduces AM fungal colonization. The impact of long-term application of chemical fertilizer on AM fungal communities was investigated with respect to the time scale.

Methods

Soils were collected from four plots with different fertilizer management in the long-term experimental field established in 1914. Lotus japonicus was grown in the soils in a greenhouse, while Glycine max was grown in the plots in the field. DNA was extracted from their roots, and the diversity and community compositions were analyzed based on occurrence of the AM fungal phylotypes defined by sequence similarity in the LSU rDNA.

Results

The 90-year-application of N and K in the absence of P increased AM fungal diversity and resulted in formation of a distinctive fungal community compared with those in the other treatments. This effect was not cancelled by single application of P. Whereas the impact of balanced application of N, P, and K was ambiguous.

Conclusion

These observations suggest that the presence/absence of P-fertilizer has a major impact on AM fungal communities, but the action may appear only on a long time scale.  相似文献   

17.
Soil microbial communities are essential for regulating the dynamics of plant productivity. However, how soil microbes mediate temporal stability of plant productivity at large scales across various soil fertility conditions remains unclear. Here, we combined a regional survey of 51 sites in the temperate grasslands of northern China with a global grassland survey of 120 sites to assess the potential roles of soil microbial diversity in regulating ecosystem stability. The temporal stability of plant productivity was quantified as the ratio of the mean normalized difference vegetation index to its standard deviation. Soil fungal diversity, but not bacterial diversity, was positively associated with ecosystem stability, and particular fungal functional groups determined ecosystem stability under contrasting conditions of soil fertility. The richness of soil fungal saprobes was positively correlated with ecosystem stability under high-fertility conditions, while a positive relationship was observed with the richness of mycorrhizal fungi under low-fertility conditions. These relationships were maintained after accounting for plant diversity and environmental factors. Our findings highlight the essential role of fungal diversity in maintaining stable grassland productivity, and suggest that future studies incorporating fungal functional groups into biodiversity–stability relationships will advance our understanding of their linkages under different fertility conditions.  相似文献   

18.

Background and Aim

Nitrogen (N) and carbon (C) isotopic signatures (δ15N and δ13C) serve as powerful tools for understanding temporal changes in ecosystem processes, but how these signatures change across boreal forest chronosequences is poorly understood.

Methods

The δ15N, δ13C, and C/N ratio of foliage of eight dominant plant species, including trees, understory shrubs, and a moss, as well as humus, were examined across a 361 years fire-driven chronosequence in boreal forest in northern Sweden.

Results

The δ13C and C/N ratio of plants and humus increased along the chronosequence, suggesting increasing plant stress through N limitation. Despite increasing biological N fixation by cyanobacteria associated with feather mosses, δ15N showed an overall decline, and δ15N of the feather moss and associated vascular plants diverged over time from that of atmospheric N2.

Conclusions

Across this chronosequence the N fixed by cyanobacteria is unlikely to be used by mosses and vascular plants without first undergoing mineralization and mycorrhizal transport, which would cause a change in δ15N signature due to isotopic fractionation. The decreasing trend of δ15N suggests that as the chronosequence proceeds, the plants may become more dependent on N transferred from mycorrhizal fungi or from N deposition.  相似文献   

19.
Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource‐conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes.  相似文献   

20.

Aims

Plant species and functional groups are known to drive the community of belowground invertebrates but whether their effects are consistent across environmental gradients is less well understood. We aimed to determine if plant effects on belowground communities are consistent across a successional gradient in boreal forests of northern Sweden.

Methods

We performed two plant removal experiments across ten stands that form a 364-year post-fire boreal forest chronosequence. Through the removal of plant functional groups (mosses or dwarf shrubs) and of individual species of dwarf shrubs, we aimed to determine if the effects of functional groups and species on the soil micro-arthropod community composition varied across this chronosequence.

Results

Removal of mosses had a strong negative impact on the abundance and diversity of Collembola and Acari and this effect was consistent across the chronosequence. Only specific Oribatid families declined following dwarf-shrub species removals, with some of these responses being limited to old forest stands.

Conclusions

Our results show that the impacts of plants on micro-arthropods is consistent across sites that vary considerably in their stage of post-fire ecosystem development, despite these stages differing greatly in plant productivity, fertility, humus accumulation and moss development. In addition, mosses are a much stronger driver of the micro-arthropod community than vascular plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号