首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When mitochondrial respiration is compromised, the F1Fo-ATP synthase reverses and consumes ATP, serving to maintain the mitochondrial membrane potential (Δψm). This process is mitigated by IF1. As little is known of the cell biology of IF1, we have investigated the functional consequences of varying IF1 expression. We report that, (1) during inhibition of respiration, IF1 conserves ATP at the expense of Δψm; (2) overexpression of IF1 is protective against ischemic injury; (3) relative IF1 expression level varies between tissues and cell types and dictates the response to inhibition of mitochondrial respiration; (4) the density of mitochondrial cristae is increased by IF1 overexpression and decreased by IF1 suppression; and (5) IF1 overexpression increases the formation of dimeric ATP synthase complexes and increases F1Fo-ATP synthase activity. Thus, IF1 regulates mitochondrial function and structure under both physiological and pathological conditions.  相似文献   

2.
The location of the endogenous inhibitor protein ( IF1) in the rotor/stator architecture of the bovine mitochondrial ATP synthase was studied by reversible cross-linking with dithiobis(succinimidylpropionate) in soluble F1I and intact F1F0I complexes of submitochondrial particles. Reducing two-dimensional electrophoresis, Western blotting, and fluorescent cysteine labeling showed formation of –IF1, IF1–IF1, –IF1, and –IF1 cross-linkages in soluble F1I and in native F1F0I complexes. Cross-linking blocked the release of IF1 from its inhibitory site and therefore the activation of F1I and F1F0I complexes in a dithiothreitol-sensitive process. These results show that the endogenous IF1 is at a distance 12 Å,to and subunits of the central rotor of the native mitochondrial ATP synthase. This finding strongly suggests that, without excluding the classical assumption that IF1 inhibits conformational changes of the catalytic subunits, the inhibitory mechanism of IF1 may involve the interference with rotation of the central stalk.  相似文献   

3.
Blue native gel electrophoresis purification and immunoprecipitation of F0F1-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F1 sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex.  相似文献   

4.
The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDPDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDPDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDPDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.  相似文献   

5.
Background information. The yeast mitochondrial F1Fo‐ATP synthase is a large complex of 600 kDa that uses the proton electrochemical gradient generated by the respiratory chain to catalyse ATP synthesis from ADP and Pi. For a large range of organisms, it has been shown that mitochondrial ATP synthase adopts oligomeric structures. Moreover, several studies have suggested that a link exists between ATP synthase and mitochondrial morphology. Results and discussion. In order to understand the link between ATP synthase oligomerization and mitochondrial morphology, more information is needed on the supramolecular organization of this enzyme within the inner mitochondrial membrane. We have conducted an electron microscopy study on wild‐type yeast mitochondria at different levels of organization from spheroplast to isolated ATP synthase complex. Using electron tomography, freeze‐fracture, negative staining and image processing, we show that cristae form a network of lamellae, on which ATP synthase dimers assemble in linear and regular arrays of oligomers. Conclusions. Our results shed new light on the supramolecular organization of the F1Fo‐ATP synthase and its potential role in mitochondrial morphology.  相似文献   

6.
The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDPDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDPDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDPDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.  相似文献   

7.
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F0F1ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F0F1ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F0F1ATPsynthase regulation by the inhibitory protein IF1 in heart preconditioning strategies; ii) the structure and function of mitochondrial F0F1ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F0F1 ATP synthase in search for possible actors of its regulation, such as IF1 and calmodulin, at cell surface.  相似文献   

8.
Mitochondrial F1Fo‐ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear‐ and mitochondria‐encoded subunits. Whereas chaperones for formation of the matrix‐exposed hexameric F1‐ATPase core domain have been identified, insight into how the nuclear‐encoded F1‐domain assembles with the membrane‐embedded Fo‐region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1‐module and peripheral stalk, but not with the assembled F1Fo‐ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1‐module to the membrane embedded Fo‐domain. We conclude that INAC represents a matrix‐exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo‐ATP synthase.  相似文献   

9.
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.  相似文献   

10.
Here we study ATP synthase from human ρ0 (rho zero) cells by clear native electrophoresis (CNE or CN-PAGE) and show that ATP synthase is almost fully assembled in spite of the absence of subunits a and A6L. This identifies subunits a and A6L as two of the last subunits to complete the ATP synthase assembly. Minor amounts of dimeric and even tetrameric forms of the large assembly intermediate were preserved under the conditions of CNE, suggesting that it associated further into higher order structures in the mitochondrial membrane. This result was reminiscent to the reduced amounts of dimeric and tetrameric ATP synthase from yeast null mutants of subunits e and g detected by CNE. The dimer/oligomer-stabilizing effects of subunits e/g and a/A6L seem additive in human and yeast cells. The mature IF1 inhibitor was specifically bound to the dimeric/oligomeric forms of ATP synthase and not to the monomer. Conversely, nonprocessed pre-IF1 still containing the mitochondrial targeting sequence was selectively bound to the monomeric assembly intermediate in ρ0 cells and not to the dimeric form. This supports previous suggestions that IF1 plays an important role in the dimerization/oligomerization of mammalian ATP synthase and in the regulation of mitochondrial structure and function.  相似文献   

11.
Taking advantage from the peculiar features of the embryonic rat heart‐derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac‐like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase‐β) and of the peripheral stalk, responsible for the correct F1‐FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase‐β, ATP synthase‐b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto‐F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto‐F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo‐F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1‐FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin‐insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub‐assemblies together evoking more regulation by IF1. J. Cell. Biochem. 9999: 1–13, 2015. © 2015 Wiley Periodicals, Inc. J. Cell. Biochem. 117: 470–482, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF1 occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme''s rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF1 with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1–60 of bovine IF1 with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme''s stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.  相似文献   

13.
The physiological role of the mitochondrial ATP synthase complex is to generate ATP through oxidative phosphorylation. Indeed, the enzyme can reverse its activity and hydrolyze ATP under ischemic conditions, as shown in isolated mitochondria and in mammalian heart and liver. However, what occurs when cancer cells experience hypoxia or anoxia has not been well explored. In the present study, we investigated the bioenergetics of cancer cells under hypoxic/anoxic conditions with particular emphasis on ATP synthase, and the conditions driving it to work in reverse. In this context, we further examined the role exerted by its endogenous inhibitor factor, IF1, that it is overexpressed in cancer cells. Metabolic and bioenergetic analysis of cancer cells exposed to severe hypoxia (down to 0.1% O2) unexpectedly showed that Δψm is preserved independently of the presence of IF1 and that ATP synthase still phosphorylates ADP though at a much lower rate than in normoxia. However, when we induced an anoxia-mimicking condition by collapsing ΔμΗ+ with the FCCP uncoupler, the IF1-silenced clones only reversed the ATP synthase activity hydrolyzing ATP in order to reconstitute the electrochemical proton gradient. Notably, in cancer cells IF1 overexpression fully prevents ATP synthase hydrolytic activity activation under uncoupling conditions. Therefore, our results suggest that IF1 overexpression promotes cancer cells survival under temporary anoxic conditions by preserving cellular ATP despite mitochondria dysfunction.  相似文献   

14.
《BBA》2006,1757(9-10):1162-1170
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral “stator stalk”, which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2δ; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit δ (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.  相似文献   

15.
Nakazono M  Imamura T  Tsutsumi N  Sasaki T  Hirai A 《Planta》2000,210(2):188-194
Two cDNA clones encoding F1F0-ATPase inhibitor proteins, which are loosely associated with the F1 part of the mitochondrial F1F0-ATPase, were characterized from rice (Oryza sativa L. cv. Nipponbare). A Northern hybridization showed that the two genes (designated as IF 1 -1 and IF 1 -2) are transcribed in all the organs examined. However, the steady-state mRNA levels varied among organs. A comparison of the deduced amino acid sequences of the two IF 1 genes and the amino acid sequence of the mature IF1 protein from potato revealed that IF1-1 and IF1-2 have N-terminal extensions with features that are characteristic of a mitochondrial targeting signal. To determine the subcellular localization of the gene products, the IF1-1 or IF1-2 proteins were fused in frame to the green fluorescent protein (GFP) or the fused GFP-β-glucuronidase, and expressed transiently in onion or dayflower epidermal cells. Localized fluorescence was detected in mitochondria, confirming that the two IF1 proteins are targeted to mitochondria. Received: 9 July 1999 / Accepted: 17 August 1999  相似文献   

16.
A method has been developed to allow the level of F0F1ATP synthase capacity and the quantity of IF1 bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF1 content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF1 antibodies.Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF1 content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF1. In addition, both in vivo and in vitro, 1.3-1.4 mol of IF1 was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF1 in the F0 sector.  相似文献   

17.
Mitochondrial F1Fo-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F1Fo-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F1Fo-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F1Fo-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F1 catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F1 to the lipid monolayer and the Fo membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within Fo by electron microscopy and AFM.  相似文献   

18.
The structural and functional connection between the peripheral catalytic F1 sector and theproton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. Theobservations examined show that the N-terminus of subunit , the carboxy-terminal and centralregion of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateralstalk, which connects the peripheries of F1 to F0 and surrounds the central element of thestalk, constituted by subunits and . The ATPase inhibitor protein (IF1) binds at one sideof the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The42L-58K segment of IF1, which is per se the most active domain of the protein, binds at thesurface of one of the three / pairs of F1, thus preventing the cyclic interconversion of thecatalytic sites required for ATP hydrolysis.  相似文献   

19.
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c10 ring and the other stator subunits at the F0-F0 dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356–12358). In the ATP synthase dimer, the two peripheral stalks are located near the F1-F1 interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.  相似文献   

20.
FoF1-ATP synthase is the nanomotor responsible for most of ATP synthesis in the cell. In physiological conditions, it carries out ATP synthesis thanks to a proton gradient generated by the respiratory chain in the inner mitochondrial membrane. We previously reported that isolated myelin vesicles (IMV) contain functional FoF1-ATP synthase and respiratory chain complexes and are able to conduct an aerobic metabolism, to support the axonal energy demand. In this study, by biochemical assay, Western Blot (WB) analysis and immunofluorescence microscopy, we characterized the IMV FoF1-ATP synthase. ATP synthase activity decreased in the presence of the specific inhibitors (olygomicin, DCCD, FCCP, valynomicin/nigericin) and respiratory chain inhibitors (antimycin A, KCN), suggesting a coupling of oxygen consumption and ATP synthesis. ATPase activity was inhibited in low pH conditions. WB and microscopy analyses of both IMV and optic nerves showed that the Inhibitor of F1 (IF1), a small protein that binds the F1 moiety in low pH when of oxygen supply is impaired, is expressed in myelin sheath. Data are discussed in terms of the role of IF1 in the prevention of the reversal of ATP synthase in myelin sheath during central nervous system ischemic events. Overall, data are consistent with an energetic role of myelin sheath, and may shed light on the relationship among demyelination and axonal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号