首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the spinnable regenerated silk fibroin aqueous solution with high concentration was prepared and the regenerated silk fibers were obtained from the aqueous solution by two different spinning processes at ambient temperature. The orientation of these fibers was characterized by polarizing microscope. Their secondary structure was investigated by Raman spectroscopy and related mechanical properties were also measured. These data showed that shearing is an important step for increasing orientation and silk II (β-sheet) structure, and the mechanical properties of the regenerated silk fibers can also be improved by shearing.  相似文献   

2.
In this paper, regenerated silk fibroin (SF) aqueous solutions were adjusted to a pH of 6.9 by mimicing the condition in the posterior division of silkworm's gland and rheological behavior of solutions was investigated. The electrospinning technique was used to prepare fibers, and non-woven mats of regenerated B. mori silk fibroin were successfully obtained. The effects of electrospinning parameters on the morphology and diameter of regenerated silk fibers were investigated by orthogonal design. Statistical analysis showed that voltage, the concentration of regenerated SF solutions and the distance between tip and collection plate were the most dominant parameters to fiber morphology, diameter and diameter distribution, respectively. An optimal electrospinning condition was obtained in producing uniform cylindrical fibers with an average diameter of 1300nm. It was as follows: the concentration 30%, voltage 40kV, distance 20cm. The structure of electrospun mats was characterized by Raman spectroscopy (RS), wide-angle X-ray diffraction (WAXD) and modulated differential scanning calorimetry (MDSC). It was found that electrospun mats were predominantly random coil/silk I structure, and the transition to silk II (beta-sheet) rich structure should be further explored.  相似文献   

3.
Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers.  相似文献   

4.
To study the spinning condition of natural biopolymer silk, the silk fibers were directly acquired from Bombyx mori silkworm, N140 x C140 by a simple artificial forcibly silking method at the speed of 60, 120, 180 and 240 cm min(-1), respectively and its microstructure and physical properties were evaluated. The fine silk fibers (about 8 microm) were obtained at faster spinning speed, 240 cm min(-1). The tensile properties of silk fibers were remarkably increased with raising the forcibly spinning speeds. The beta-sheet structure contents of silk fibers obtained at higher speed were considerably increased. The fibers obtained by different spinning speeds exhibited a fairly similar X-ray crystallinity, while the degree of molecular orientation increased with decreasing the fiber diameter. The fine silk fibers obtained at higher speed (240 cm min(-1)) exhibited a slightly higher thermal stability, as shown by the upward shift of differential scanning calorimetry (DSC) decomposition temperature.  相似文献   

5.
Transgenic silkworms that weave recombinant proteins into silk cocoons   总被引:1,自引:0,他引:1  
As a result of breeding for more than 4,000 years, the silkworm, Bombyx mori, has acquired the ability to synthesize bulk amounts of silk proteins in its silk glands. To utilize this capacity for mass production of useful proteins, transgenic silkworms were generated that synthesized recombinant proteins in the silk gland and secreted them into the silk cocoon. The silk gland is classified into two main regions: the posterior (PSG) and the middle silk gland (MSG). By controlling the expressed regions of the recombinant protein gene in the silk gland, we were able to control the localization of the synthesized protein in the silk thread. Expression in the PSG or MSG led to localization in the insoluble fibroin core or hydrophilic outer sericin layer, respectively. This review focuses on the expression of recombinant protein in the MSG of transgenic silkworms. The recombinant protein secreted in the sericin layer is extractable from the cocoon with only a small amount of endogenous silk protein contamination by soaking the cocoon in mild aqueous solutions. The possibility of utilizing transgenic silkworms as a valuable tool for the mass production of therapeutic and industrially relevant recombinant proteins is discussed.  相似文献   

6.
Effects of electrospinning parameters (including voltage, collection distance, solution concentration and flow rate) on the morphology and diameter distribution of regenerated SF (silk fibroin) fiber were investigated. Afterward, SF tubular scaffold composed of homogenous fibers was fabricated at voltage of 18 kV, collection distance of 18 cm, concentration of 37%, and flow rate of 0.15 mL/min. After methanol treatment, SF tubular scaffold showed tensile strength of 3.57 MPa and porosity of 80.85%. It is satisfied that our work offers a simple method to fabricate seamless and porous tubular scaffold from SF without any additives and organic solvents. Furthermore, the results suggest that this tubular scaffold shows promising applications in small-diameter vascular graft.  相似文献   

7.
The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.  相似文献   

8.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   

9.
Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing ( Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an alpha-helical secondary structure. The final instar lacewing larvae spin protein fibers of approximately 2 microm diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.  相似文献   

10.
Despite widespread use of silk, it remains a significant challenge to fabricate fibers with properties similar to native silk. It has recently been recognized that the key to tuning silk fiber properties lies in controlling internal structure of assembled β-sheets. We report an advance in the precise control of silk fiber formation with control of properties via microfluidic solution spinning. We use an experimental approach combined with modeling to accurately predict and independently tune fiber properties including Young's modulus and diameter to customize fibers. This is the first reported microfluidic approach capable of fabricating functional fibers with predictable properties and provides new insight into the structural transformations responsible for the unique properties of silk. Unlike bulk processes, our method facilitates the rapid and inexpensive fabrication of fibers from small volumes (50 μL) that can be characterized to investigate sequence-structure-property relationships to optimize recombinant silk technology to match and exceed natural silk properties.  相似文献   

11.
Dash R  Acharya C  Bindu PC  Kundu SC 《BMB reports》2008,41(3):236-241
The antioxidant potential of silk protein sericin from the non-mulberry tropical tasar silkworm Antheraea mylitta cocoon has been assessed and compared with that of the mulberry silkworm, Bombyx mori. Skin fibroblast cell line (AH927) challenged with hydrogen peroxide served as the positive control for the experiment. Our results showed that the sericin obtained from tasar cocoons offers protection against oxidative stress and cell viability is restored to that of control on pre-incubation with the sericin. Fibroblasts pre-incubated with non-mulberry sericin had significantly lower levels of catalase; lactate dehydrogenase and malondialdehyde activity when compared to untreated ones. This report indicates that the silk protein sericin from the non-mulberry tropical tasar silkworm, A. mylitta can serve as a valuable antioxidant.  相似文献   

12.
The silk proteins, fibroin and sericin, are produced in the silk gland of Bombyx mori, and hydrophilic sericin envelops fibroin with successive sticky layers in the formation of a cocoon. To study the biological functions of sericin, we focused on the serine-rich sericin peptide consisting of 38 amino acids, which is a highly conserved and internally repetitive sequence of a sericin protein. The corresponding gene was chemically synthesized, and the PCR-amplified gene was ligated to oligomerize sericin peptide and fused at the amino terminus to a His-tagged and proteolytic cleavage sequence in an inducible expression vector. When the dimers of sericin peptides were overexpressed in Escherichia coli, the transformants showed a prominent increase in cell viability after freezing in medium. Further, the purified dimeric sericin peptide from E. coli was found to be effective in protecting lactate dehydrogenase from denaturation caused by freeze-thaw. Both of these protective effects against freezing stress in cells and proteins were also observed with sericin hydrolysate. These results indicate that this unique sericin peptide, like sericin, has a high cryoprotective activity and will be valuable as a new biomaterial for industrial use.  相似文献   

13.
In this study, we elucidated the effect of residual silk sericin (SS) on structure and mechanical properties of regenerated silk filament as well as on fiber formation. The dope viscosity markedly increased with increasing residual SS content in dope solution which was prepared by dissolving the silk protein in formic acid. As a result of FTIR, (13)C NMR, and XRD, a small amount of SS (9.6%) contained in the filament showed highest content of beta-sheet conformation and maximum crystallinity. It seems that the SS affects the structural change of SF up to a certain level by inducing the beta-transition easily. The tenacity of the filaments, containing 9.6-18.9% SS, was in the range of 2.1-2.4 gf/d, which was about 50% higher than the filament without SS (pure SF). Consequently, with the enhancement of spinnability in wet spinning process, the SS can play an important role for developing the crystalline structure of SF as well as for improving mechanical properties of the regenerated silk fiber.  相似文献   

14.
This paper reports chemical modification of silk sericin in LiCl/dimethyl sulfoxide (DMSO) solvent with 4-cyanophenyl isocyanate. Sericin is a highly hydrophilic protein secreted by Bombyx mori, serving as a protein glue in a cocoon. LiCl/DMSO was found to be a good solvent of sericin and useful for homogeneous modification of its abundant hydroxyl groups under nonaqueous condition. Fourier transform infrared (FTIR) analysis of the modified sericins revealed that 4-cyanophenyl groups were incorporated into sericin molecules mainly through urethane linkages. Several characteristics of the modified sericins such as solubility characteristic, hygroscopic property, and thermal stability were investigated. Secondary structure analysis using FTIR spectra suggested that formation of strong intermolecular hydrogen bonds was inhibited by the modification that is probably attributable to the incorporation of bulky 4-cyanophenyl groups. These results demonstrate that chemical modification of sericin using LiCl/DMSO solvent markedly alters its characteristics.  相似文献   

15.
Silk cocoons provide protection to silkworm from biotic and abiotic hazards during the immobile pupal phase of the lifecycle of silkworms. Protection is particularly important for the wild silk cocoons reared in an open and harsh environment. To understand whether some of the cocoon components resist growth of microorganisms, in vitro studies were performed using gram negative bacteria Escherichia coli (E. coli) to investigate antibacterial properties of silk fiber, silk gum, and calcium oxalate crystals embedded inside some cocoons. The results show that the previously reported antibacterial properties of silk cocoons are actually due to residues of chemicals used to isolate/purify cocoon elements, and properly isolated silk fiber, gum, and embedded crystals free from such residues do not have inherent resistance to E. coli. This study removes the uncertainty created by previous studies over the presence of antibacterial properties of silk cocoons, particularly the silk gum and sericin. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 237–245, 2014.  相似文献   

16.
Applications of natural silk protein sericin in biomaterials   总被引:24,自引:0,他引:24  
Silk sericin is a natural macromolecular protein derived from silkworm Bombyx mori. During the various stages of producing raw silk and textile, sericin can be recovered for other uses. Also, sericin recovery reduces the environmental impact of silk manufacture. Sericin protein is useful because of its properties. The protein resists oxidation, is antibacterial, UV resistant, and absorbs and releases moisture easily. Sericin protein can be cross-linked, copolymerized, and blended with other macromolecular materials, especially artificial polymers, to produce materials with improved properties. The protein is also used as an improving reagent or a coating material for natural and artificial fibers, fabrics, and articles. The materials modified with sericin and sericin composites are useful as degradable biomaterials, biomedical materials, polymers for forming articles, functional membranes, fibers, and fabrics.  相似文献   

17.
Ittah S  Cohen S  Garty S  Cohn D  Gat U 《Biomacromolecules》2006,7(6):1790-1795
We have employed baculovirus-mediated expression of the recombinant A. diadematus spider dragline silk fibroin rADF-4 to explore the role of the evolutionary conserved C-terminal domain in self-assembly of the protein into fiber. In this unique system, polymerization of monomers occurs in the cytoplasm of living cells, giving rise to superfibers, which resemble some properties of the native dragline fibers that are synthesized by the spider using mechanical spinning. While the C-terminal containing rADF-4 self-assembled to create intricate fibers in the host insect cells, a C-terminal deleted form of the protein (rADF-4-DeltaC) self-assembled to create aggregates, which preserved the chemical stability of dragline fibers, yet lacked their shape. Interestingly, ultrastructural analysis showed that the rADF-4-DeltaC monomers did form rudimentary nanofibers, but these were short and crude as compared to those of rADF-4, thus not supporting formation of the highly compact and oriented "superfiber" typical to the rADF-4 form. In addition, using thermal analysis, we show evidence that the rADF-4 fibers but not the rADF-4-DeltaC aggregates contain crystalline domains, further establishing the former as a veritable model of authentic dragline fibers. Thus, we conclude that the conserved C-terminal domain of dragline silk is important for the correct structure of the basic nanofibers, which assemble in an oriented fashion to form the final intricate natural-like dragline silk fiber.  相似文献   

18.
Sericin is a group of proteins expressed in the middle silk gland that covers the surface of fibroin in the cocoon filament of Bombyx mori. Sericin consists of several serine-rich proteins with different molecular masses. Sericin A is one of the proteins and is produced in the anterior portion of the middle silk gland. To identify the gene coding for the protein, we determined the primary structures of its partial peptides, and the gene was searched using the silkworm genomic databases. Three contigs containing the corresponding nucleotide sequences were identified and categorized as one group. The gene structure covering the 5' flanking and the 3' end was determined by PCR fragments from genomic DNA, RT-PCR, and 5' and 3' RACE. The amino acid sequence deduced from the nucleotide sequence mainly consists of two serine-rich regions of 86-amino acid motif and 8-amino acid repeated sequence. The expression of the gene is limited to the anterior and middle parts of the middle silk gland. In addition, because the sericin gene appeared different from the sericin 1 and 2 genes reported earlier, we designated the newly discovered gene as sericin 3.  相似文献   

19.
The silk gland in Lepidoptera larvae is responsible for the silk production used for shelter or cocoon construction. The secretion of fibroin and sericin by the different silk gland regions are well established. There are few attempts to detect lipid components in the insect silk secretion, although the presence of such element may contribute to the resistance of the shelter to wet environment. This study characterizes the glandular region and detects the presence of lipid components in the secretion of the silk gland of Diatraea saccharalis(Fabricius). The silk gland was submitted to histochemical procedure for lipid detection or conventionally prepared for ultrastructural analyses. Lipid droplets were histochemically detected in both the apical cytoplasm of cell of the anterior region and in the lumen among the microvilli. Ultrastructural analyses of the anterior region showed lipid material, visualized as myelin-like structures within the vesicular Golgi complex and in the apical secretory globules, mixed up with the sericin; similar material was observed into the lumen, adjacent to the microvilli. Lipids were not detected in the cells neither in the lumen of the posterior region. Our results suggest that the silk produced by D. saccharalis has a minor lipid content that is secreted by the anterior region together with the sericin.  相似文献   

20.
The flow stability of silk fibroin (SF) aqueous solutions with different concentrations under different temperatures was investigated. It was found that the flow stability decreased quickly with the increase of solution concentration and temperature. X-ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy analysis showed that silk fibroin in aqueous solution was mainly in random coil and alpha-helix conformation. However, it turned into alpha-helix and beta-sheet conformation after gelation, and both silk I and silk II crystalline structures appeared accordingly. The investigation implies that the original dilute regenerated SF aqueous solution should be stored under low temperature and concentrated just before spinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号