首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 μM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.  相似文献   

3.
Thermal hysteresis proteins (Thps) known as antifreeze proteins for their antifreeze activity, depress the freezing point of water below the melting point in many polar marine fishes, terrestrial arthropods and plants. For the purpose of breeding cold-resistant plants, we designed to introduce the Thp gene into the plants. The physiological and biochemical effect of high-lever expression of the modified Choristoneura fumiferana Thp (ThpI) in Arabidopsis thaliana plants was analyzed. Under low temperature stress, the ThpI transgenic plants exhibited stronger growth than wild-type plants. The elevated cold tolerance of the ThpI over-expressing plants was confirmed by the changes of electrolyte leakage activity, malonyldialdehyde and proline contents. These results preliminarily showed that the Thp possibly be used to enhance the low temperature-tolerant ability of plants.  相似文献   

4.
The ZEITLUPE (ZTL) protein is involved in the control of circadian period, hypocotyl elongation and flowering time in Arabidopsis thaliana. The aim of the present work was the identification of the InZTL gene and localization of its mRNA in the model short-day plant Ipomoea nil. The deduced InZTL protein of 622 amino acid residues contained a LOV domain at the N-terminal part, followed by an F-box domain and six carboxy terminal kelch repeats. Amino acid sequence of InZTL showed 84 % homology with Mesembryanthemum crystallinum ZTL (McZTL) and 83 % with Arabidopsis thaliana ZTL (AtZTL). Fluorescence in situ hybridization (FISH) to InZTL mRNA showed its high accumulation in the vascular bundles as well in the guard cells of the cotyledon. Immunolocalization of ZTL protein indicated a similar distribution pattern of ZTL protein as InZTL mRNAs.  相似文献   

5.
6.
Isolation and characterization of promoters are important in understanding gene regulation and genetic engineering of crop plants. Earlier, a pentatricopeptide repeat protein (PPR) encoding gene (At2g39230), designated as Lateral Organ Junction (LOJ) gene, was identified through T-DNA promoter trapping in Arabidopsis thaliana. The upstream sequence of the LOJ gene conferred on the reporter gene a novel LOJ-specific expression. The present study was aimed at identifying and characterizing the cis-regulatory motifs responsible for tissue-specific expression in the −673 and +90 bases upstream of the LOJ gene recognized as LOJ promoter. In silico analysis of the LOJ promoter revealed the presence of a few relevant regulatory motifs and a unique feature like AT-rich inverted repeat. Deletion analysis of the LOJ promoter confirmed the presence of an enhancer-like element in the distal region (−673/−214), which stimulates a minimal promoter-like sequence in the −424/−214 region in a position and orientation autonomous manner. The −136/+90 region of the LOJ promoter was efficient in driving reporter gene expression in tissues like developing anthers and seeds of Arabidopsis. A positive regulation for the seed- and anther-specific expression module was contemplated within the 5′ untranslated region of the LOJ gene. However, this function was repressed in the native context by the lateral organ junction-specific expression. The present study has led to the identification of a novel lateral organ junction-specific element and an enhancer sequence in Arabidopsis with potential applications in plant genetic engineering.  相似文献   

7.
8.
9.
In order to investigate chromosome elimination in symmetric somatic hybridization between Bupleurum scorzonerifolium and Arabidopsis thaliana, protoplasts were isolated from suspension cultures of both A. thaliana and B. scorzonerifolium parents. Biparental protoplasts were mixed at a rate of 1.5:1 and fused with PEG-method. After protoplast fusion, the products were cultured in the P5 liquid medium for microcallus formation. Single cell lines formed from microcalli after subculturing on the MB1 (Xia and Chen, Plant Sci 120:197–203, 1996) solid medium. The putative somatic hybrid cell lines were identified by cytological and molecular analysis. Of the 132 somatic cell lines generated, 16 were identified as somatic hybrids, with the phenotypes resembled B. scorzonerifolium parent. These hybrids showed a complete set of B. scorzonerifolium chromosome and 0–2 small chromosome(s) of A. thaliana. A few of them showed nuclear and cytoplasmic SSR fragments of A. thaliana. These hybrid cell lines could differentiate to green spots, buds/leaves through complementation of regeneration ability. The chromosomes elimination of A. thaliana was discussed. Wang Minqin and Zhao Junsheng contributed equally to the work.  相似文献   

10.
FLOWERING LOCUS C (FLC), which encodes a MADS-box domain protein, is a flowering repressor involved in the key position of Arabidopsis (Arabidopsis thaliana) flowering network. In Brassica species, several FLC homologues are involved in flowering time like Arabidopsis FLC. Here, we report the analysis of splicing variation in BrpFLC1 and the expression of BrpFLC homologues associated with early flowering of Purple Flowering Stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey). It was indicated that a splice site mutation happened in intron 6 with G to A at the 5′ splice site. Three alternative splicing patterns of BrpFLC1, including the entire exon 6 excluded and 24 bp or 87 bp of intron 6 retained, were identified in Purple Flowering Stalk. But there was only one normal splicing pattern in Pakchoi (Brassica campestris ssp. chinensis var. communis). Northern blotting and semi-quantitative RT-PCR revealed that the expression levels of the three FLC homologues in Purple Flowering Stalk were lower than that in Pakchoi. However, the expression levels of downstream genes, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT), were higher in Purple Flowering Stalk. These results suggest that a natural splicing site mutation in BrpFLC1 gene and repressed expression of all BrpFLC genes contribute significantly to flowering time variation in Purple Flowering Stalk.  相似文献   

11.
12.
Expansins are non-enzymatic plant proteins breaking hydrogen bonds between cellulose microfibrils and hemicellulose polymer matrix. Each plant has many expansin genes, whose protein products participate in the regulation of plant growth and development mainly by regulating cell expansion. To analyze the effects of elevated expansin expression on the plant organ sizes, we cloned the AtEXPA10 gene from Arabidopsis thaliana and PnEXPA1 gene from Populus nigra. Transgenic tobacco plants expressing the target genes were obtained. The obtained transgenic tobacco plants were shown to have significantly larger leaves and longer stems compared to control plants. The flowers were quite insignificantly larger, but at the same time transgenic plants had more flowers. The microscopic studies showed that the organs of AtEXPA10-carrying plants were larger mainly due to stimulated cell proliferation, whereas the overexpression of the PnEXPA1 gene activated cell expansion.  相似文献   

13.
To overexpress the chitosanase gene (csn) in F. solani, a vector based on pCAMBIA 1300 was constructed. The csn gene, which is under control of the Aspergillus nidulans gpdA promoter and A. nidulans trpC terminator, was introduced back into the F. solani genome by Agrobacterium tumefaciens-mediated transformation, and the herbicide-resistance gene bar from Streptomyces hygroscopicus was used as the selection marker. Transformants which showed a significant increase in chitosanase production (~2.1-fold than control) were obtained. Southern blot analysis indicated that most transformants had a single-copy T-DNA integration.  相似文献   

14.
15.
Antifreeze proteins depress the non-equilibrium freezing point of aqueous solutions, but only have a small effect on the equilibrium melting point. This difference between the freezing and melting points has been termed thermal hysteresis activity (THA). THA identifies the presence and relative activity of antifreeze proteins. Two antifreeze protein cDNAs, dafp-1 and dafp-4, encoding two self-enhancing (have a synergistic effect on THA) antifreeze proteins (DAFPs) from the beetle Dendroides canadensis, were introduced into the genome of Arabidopsis thaliana via Agrobacterium-mediated floral dip transformation. Southern blot analysis indicated multiple insertions of transgenes. Both DAFP-1 and/or DAFP-4 were expressed in transgenic A. thaliana as shown by RT-PCR and Western blot. Apoplastic fluid from T 3 DAFP-1 + DAFP-4-producing transgenic A. thaliana exhibited THA in the range of 1.2–1.35°C (using the capillary method to determine THA), demonstrating the presence of functioning antifreeze proteins (with signal peptides for extracellular secretion). The freezing temperature of DAFP-1 + DAFP-4-producing transgenic A. thaliana was lowered by approximately 2–3°C compared with the wild type.  相似文献   

16.
17.
18.
A novel late embryogenesis abundant (LEA) gene (AY804193), namedCbLEA, has now been isolated fromChorispora bungeana. This rare alpine subnival plant can survive sudden snowstorms and low temperatures. The full-lengthCbLEA is 842 bp, with an open reading frame encoding 169 ami no acids. The putative molecular weight ofCbLEA protein is 17.9 kDa, with an estimatedpl of 6.45. To investigate the functioning of thisCbLEA protein in cold-stress tolerance,CbLEA was introduced into tobacco under the control of the CaMV35S promoter. Second-generation (R1) transgenic tobacco plants exhibited significantly increased tolerance to cold. These transgenics maintained lower malondialdehyde (MDA) contents and electrolyte leakage (EL) but their relative water content (RWC) was significantly higher compared with non-transgenic plants under chilling stress. Further experimental results showed that non-transgenic plants had severe freezing damage after exposure to -2°C for 1 h, whereas the transgenics suffered only slight injury under the same conditions. Moreover, survival was longer in the latter genotype at that temperature. The extent of increased cold tolerance was positive correlated with the level ofCbLEA protein accumulation, and was also reflected by the delayed development of damage symptoms. This indicates thatCbLEA is an excellent stress tolerance gene, and holds considerable potential as a new molecular tool for engineering improved plant genetics.  相似文献   

19.
20.
Elevated levels of CO2, equivalent to those projected to occur under global climate change scenarios, increase the susceptibility of soybean foliage to herbivores by down-regulating the expression of genes related to the defense hormones jasmonic acid and ethylene; these in turn decrease the gene expression and activity of cysteine proteinase inhibitors (CystPIs), the principal antiherbivore defenses in foliage. To examine the effects of elevated CO2 on the preference of Japanese beetle (JB; Popillia japonica) for leaves of different ages within the plant, soybeans were grown at the SoyFACE facility at the University of Illinois at Urbana-Champaign. When given a choice, JB consistently inflicted greater levels of damage on older leaves than on younger leaves, and there was a trend for a greater preference for young leaves grown under elevated CO2 compared to those grown under ambient CO2. More heavily damaged older leaves and those grown under elevated CO2 had reduced CystPI activity, and JB that consumed leaves with lower CystPI activity had correspondingly greater gut proteinase activity. Younger leaves with higher CystPI activity and photosynthetic rates may contribute disproportionately to plant fitness and are more protected against herbivore attack than older foliage. Cysteine proteinase inhibitors are potent defenses against JB, and the effectiveness of this defense is modulated by growth under elevated CO2 as well as leaf position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号