首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described [K. M. Sullivan and D. M. J. Lilley (1986) Cell 47, 817-827] a set of sequences, called C-type inducing sequences, which cause cruciform extrusion by adjacent inverted repeats to occur by an abnormal kinetic pathway involving a large denatured region of DNA. In this paper we apply statistical thermodynamic DNA helix melting theory to these sequences. We find a marked correlation between the ability of sequences to confer C-type cruciform character experimentally and their calculated propensity to undergo cooperative melting, and no exceptions have been found. The correlations are both qualitative and quantitative. Thus the ColE1 flanking sequences behave as single melting units, while the DNA of the S-type plasmid pIRbke8 exhibits no propensity to melt in the region of the bke cruciform. The results of the calculations are also fully consistent with the following experimental observations: 1. the ability of the isolated colL and colR fragments of the ColE1 flanking sequences, as well as the short sequence col30, to confer C-type character; 2. C-type induction by an A + T rich Drosophila sequence; 3. low-temperature cruciform extrusion by an (AT)34 sequence; 4. the effect of changing sequences at a site 90 base pairs (bp) removed from the inverted repeat; 5. the effects of systematic deletion of the colL sequence; and 6. the effects of insertion of various sequences in between the colL sequence and the xke inverted repeat. These studies show that telestability effects on thermal denaturation as predicted from equilibrium helix melting theory of linear DNA molecules may explain all the features that are revealed by studying the extrusion of cruciforms in circular DNA molecules subjected to superhelical stress.  相似文献   

2.
Certain A + T-rich DNA sequences (C-type inducing sequences) cause adjacent inverted repeats to undergo cruciform extrusion by a particular pathway (C-type extrusion), which is characterized by large activation energies and extrusion at low salt concentrations and relatively low temperatures. When they are supercoiled, these sequences become reactive toward the normally single-strand-selective reagents bromoacetaldehyde, glyoxal, osmium tetraoxide, and sodium bisulfite. The following evidence is presented: (1) The most reactive sequences are those to the left of the inverted repeat. (2) Chemical reactivity is suppressed by either sodium chloride or micromolar concentrations of distamycin. The suppression of reactivity closely parallels that of C-type cruciform extrusion. (3) Chemical reactivity requires a threshold level of negative supercoiling. The threshold superhelix density depends on the prevailing salt concentration. (4) Analysis of temperature dependences suggests that reaction with osmium tetraoxide involves transient unstacking events, while bromoacetaldehyde requires larger scale helix opening. Thus a variety of opening events may occur in the supercoiled A + T-rich sequences, from small-amplitude breathing to low-frequency, large-amplitude openings. The latter appear to be responsible for C-type cruciform extrusion.  相似文献   

3.
K M Sullivan  D M Lilley 《Cell》1986,47(5):817-827
We have discovered a striking dependence of a structural transition in DNA on sequences that are distanced from those directly participating in the transformation. The dominant factor determining the selection of kinetic properties of cruciform extrusion is the sequence of the DNA that flanks the inverted repeat. The sequence of the inverted repeat itself appears to have little or no influence. The critical sequences that confer the unusual kinetics exhibited by the ColE1 cruciform are very A+T-rich. A single such sequence is sufficient, which may be as short as 100 bp, and it can control inverted repeats placed at either end. The effects operate in cis, are independent of polarity, and may be effective over relatively long distances. The influence of context has wide implications, possibly including the control of gene expression.  相似文献   

4.
The extrusion kinetics of two cruciforms derived from unrelated DNA sequences differ markedly. Kinetic barriers exist for both reactions, necessitating elevated temperatures before extrusion proceeds at measureable speeds, but the dependence upon temperature and ionic strength is quite different for the two sequences. One, the ColE1 inverted repeat, exhibits a remarkably great temperature dependence of reaction rate and is suppressed by moderate amounts of NaCl or MgCl2. In contrast, the other, a synthetic inverted repeat present in pIRbke8, shows more modest temperature dependence and has a requirement for the presence of salt, with optimal concentrations being 50 mM NaCl or 100 microM MgCl2. Under optimal conditions, cruciform extrusion rates are fast (t1/2 less than 60m) at 37 degrees C for both sequences at native superhelix densities. In 50 mM NaCl the pIRbke8 inverted repeat is characterised by an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole -1. The differences in kinetic properties between the two sequences indicate that DNA base sequence is itself an important factor in determining cruciform kinetics, and possibly even in the selection of the mechanistic pathway.  相似文献   

5.
The physical chemistry of cruciform structures in supercoiled DNA molecules   总被引:1,自引:0,他引:1  
Inverted repeat DNA sequences extrude cruciform structures when present in negatively supercoiled molecules, stabilised by the release of torsional stress brought about by the negative twist change. We have revealed the presence of cruciform structures by means of enzyme and chemical probing experiments and topological band shift methods. The geometry of cruciform structures has been studied from two points of view. The unpairing of bases in the loop region has been investigated using bisulphite modification, with the result that the central four nucleotides have single-stranded character, and the next pair have only partially single-stranded nature. Gel electrophoretic studies of a pseudo-cruciform structure indicate that the cruciform junction introduces a pronounced bend into the molecule. The dependence of the formation of the ColE1 cruciform upon DNA supercoiling shows that it has a free energy of formation of 18.4 +/- 0.5 kcal mole-1. The kinetics of the extrusion process are complex. Most sequences extrude slowly with considerable temperature coefficients, but the detailed properties are strongly sequence-dependent. One synthetic inverted repeat sequence which we have studied in detail has an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole-1. We discuss possible mechanistic pathways for the extrusion process.  相似文献   

6.
There are two alternative pathways by which inverted repeat sequences in supercoiled DNA molecules may extrude cruciform structures, called C-type and S-type. S-type cruciforms, which form the great majority, are characterised by absolute requirement for cations to promote extrusion, which then proceeds at higher temperatures and with lower activation parameters than for C-type cruciforms. The mechanism proposed for S-type extrusion involves an initial opening of basepairs limited to the centre of the inverted repeat, formation of intra-strand basepairing and a four-way junction, and finally branch migration to the fully extruded cruciform. The model predicts that central sequence changes will be more kinetically significant than those removed from the centre. We have studied the kinetics of cruciform extrusion by a series of inverted repeats related to that of pIRbke8 by either one or two mutations in the symmetric unit. We find that mutations in the central 8 to 10 nucleotides may profoundly affect extrusion rates--the fastest being 2000-fold faster than the slowest, whereas mutations further from the centre affect rates to a much smaller extent, typically up to ten-fold. These data support the proposed mechanism for extrusion via central opening.  相似文献   

7.
The kinetic properties of cruciform extrusion in supercoiled DNA molecules fall into two main classes. C-type cruciforms extrude in the absence of added salt, at relatively low temperatures, with large activation energies, while S-type cruciforms exhibit no extrusion in the absence of salt, and maximal rates at 50 mM NaCl, with activation energies about one quarter those of the C-type. These diverse properties are believed to reflect two distinct pathways for the extrusion process, and are determined by the nature of the sequences which form the context of the inverted repeat. C-type kinetics are conferred by A + T rich sequences, implying a role of helix stability in the selection. In this study we have shown that: 1. Helix-destabilising solvents (dimethyl formamide and formamide) facilitate extrusion by normally S-type molecules at low temperatures in the absence of salt. 2. C-type extrusion is strongly suppressed by low concentrations (2-4 microM) distamycin, at which concentrations S-type extrusion is enhanced. 3. Some extrusion occurs in a C-type construct in the presence of 50 mM NaCl. This is increased by addition of 3 microM distamycin, under which conditions extrusion becomes effectively S-type. Thus S-type constructs can behave in a quasi-C-type manner in the presence of helix-destabilising solvents, and C-type extrusion is suppressed by binding a compound which stabilises A + T rich regions of DNA. Helix destabilisation leads to C-type behaviour, while helix stabilisation results in S-type properties. These studies demonstrate the influence of contextual helix stability on the selection of kinetic mechanism of cruciform extrusion.  相似文献   

8.
Large-scale cooperative helix opening has been previously observed in A + T rich sequences contained in supercoiled DNA molecules at elevated temperatures. Since it is well known that helix melting of linear DNA is suppressed by addition of salt, we have investigated the effects of added salts on opening transitions in negatively supercoiled DNA circles. We have found that localised large-scale stable melting in supercoiled DNA is strongly suppressed by modest elevation of salt concentration, in the range 10 to 30 mM sodium. This has been shown in a number of independent ways: 1. The temperature required to promote cruciform extrusion by the pathway that proceeds via the coordinate large-scale opening of an A + T rich region surrounding the inverted repeat (the C-type pathway, first observed in the extrusion of the ColE1 inverted repeat) is elevated by addition of salt. The temperature required for extrusion was increased by about 4 deg for an addition of 10 mM NaCl. 2. A + T rich regions in supercoiled DNA exhibit hyperreactivity towards osmium tetroxide as the temperature is raised; this reactivity is strongly suppressed by the addition of salt. At low salt concentrations of added NaCl (10 mM) we observe that there is an approximate equivalence between reducing the salt concentration, and the elevation of temperature. Above 30 mM NaCl the reactivity of the ColE1 sequences is completely supressed at normal temperatures. 3. Stable helix opening transitions in A + T rich sequences may be observed with elevated temperature, using two-dimensional gel electrophoresis; these transitions become progressively harder to demonstrate with the addition of salt. With the addition of low concentrations of salt, the onset of opening transitions shifts to higher superhelix density, and by 30 mM NaCl or more, no transitions are visible up to a temperature of 50 degrees C. Statistical mechanical simulation of the data indicate that the cooperativity free energy for the transition is unaltered by addition of salt, but that the free energy cost for opening each basepair is increased. These results demonstrate that addition of even relatively low concentrations of salt strongly suppress the large-scale helix opening of A + T rich regions, even at high levels of negative supercoiling. While the opening at low salt concentrations may reveal a propensity for such transitions, spontaneous opening is very unlikely under physiological conditions of salt, temperature and superhelicity, and we conclude that proteins will therefore be required to facilitate opening transitions in cellular DNA.  相似文献   

9.
We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical except for the central 10 base pairs which consist of pure AT or GC base pairs. The S series was constructed such that the overall base composition of the inverted repeats was identical but in which the positioning of blocks of AT- and GC-rich sequences varied. The rate of cruciform formation for the inverted repeats in plasmid pUC8 was dramatically influenced by the 8-10 base pairs at the center of the inverted repeat. Inverted repeats with 8-10 AT base pairs in the center were kinetically much more active in cruciform formation than inverted repeats with 8-10 GC base pairs in the center. These experiments show a dominant influence of the center sequences of inverted repeats on the rate of cruciform formation.  相似文献   

10.
R Bowater  F Aboul-ela  D M Lilley 《Biochemistry》1991,30(49):11495-11506
We have studied the properties of (A + T)-rich sequences derived from ColE1 that promote cruciform extrusion at low ionic strength in supercoiled plasmids. We compared the chemical reactivity of the sequences in negatively supercoiled DNA (using osmium tetroxide and bromoacetaldehyde) with the results of two-dimensional gel electrophoresis performed under the same conditions. Taken together, the results indicate the occurrence of cooperative helix-coil transitions in the (A + T)-rich DNA at low ionic strength, to form stable, denatured regions. The extent of the open region is a function of temperature and superhelix density, with an additional local destabilization brought about by the presence of cruciform structures. We present a simple statistical mechanical model of the helix-coil transition in the (A + T)-rich DNA, from which we have obtained estimates of the free energy for average base-pair opening of 0.31 kcal mol-1 and that for the formation of a helix-coil junction of 4.9 kcal mol-1, in 45 mM Tris-borate, pH 8.3, 0.5 mM EDTA. The results offer a model for the C-type mechanism of cruciform extrusion. Inverted repeats that are incorporated into the melted region undergo hairpin loop formation below 50 degrees C, and upon closure of the melted region, by reduction of temperature or increased ionic strength, they remain as a fully extruded cruciform structure.  相似文献   

11.
We have identified a novel family of plasmids, each containing very short monomeric units, in Podospora anserina longevity mutants. These plasmids, termed small mitochondrial DNAs (sMt-DNAs), are derived from a highly ordered 368-base pair region of the mitochondrial genome. A total of five direct repeat sequences and seven significant regions of dyad symmetry (i.e. palindromes) were found within a 434-base pair mitochondrial sequence, which includes this 368-base pair region. Mitochondrial DNA rearrangements accompany the formation of these small plasmids indicating their derivation from a plastic region of the mitochondrial genome. A possible relationship between the direct repeat sequences, the palindromic regions, and the excision process is discussed.  相似文献   

12.
During cruciform extrusion, a DNA inverted repeat unwinds and forms a four-way junction in which two of the branches consist of hairpin structures obtained by self-pairing of the inverted repeats. Here, we use single-molecule DNA nanomanipulation to monitor in real-time cruciform extrusion and rewinding. This allows us to determine the size of the cruciform to nearly base pair accuracy and its kinetics with second-scale time resolution. We present data obtained with two different inverted repeats, one perfect and one imperfect, and extend single-molecule force spectroscopy to measure the torque dependence of cruciform extrusion and rewinding kinetics. Using mutational analysis and a simple two-state model, we find that in the transition state intermediate only the B-DNA located between the inverted repeats (and corresponding to the unpaired apical loop) is unwound, implying that initial stabilization of the four-way (or Holliday) junction is rate-limiting. We thus find that cruciform extrusion is kinetically regulated by features of the hairpin loop, while rewinding is kinetically regulated by features of the stem. These results provide mechanistic insight into cruciform extrusion and help understand the structural features that determine the relative stability of the cruciform and B-form states.  相似文献   

13.
Two short d(AG)n tracts separated by either of two 40-base pair (bp) inverted repeats adopt a triple-stranded conformation (H-DNA) at the bottom of an extruded cruciform stem in negatively supercoiled plasmids at pH 4.5. Plasmids containing one d(AG)n adjacent to the inverted repeat or containing two d(AG)n tracts separated by a random sequence did not form the triplex structures. These conclusions were derived from chemical modification patterns and UV-sensitivity studies. Two-dimensional agarose gel electrophoresis revealed that the entire insert containing the cruciform and the triplex is locally unlinked. Moreover, a long range structural effect (over 40 bp of random sequence) of one (AG)7 block on the behavior of a second (AG)7 sequence was detected. This effect cannot be transmitted throughout a 50-bp segment of random sequence. A GenBank search revealed the frequent occurrence of short oligopurine blocks with an intervening random sequence of 17-40 bp.  相似文献   

14.
An inverted repeat has been created in a plasmid by ligation of two 13 nucleotide synthetic oligonucleotides into the cloning vector pAT153. The resulting recombinant plasmid, pIRbke8, is hypersensitive to cleavage by the single-strand-specific nuclease S1, and to modification by the single-strand-selective reagent bromoacetaldehyde, when the plasmid is negatively supercoiled. The new inverted repeat is a stronger S1 site than those derived from pBR322, but, in contrast to the ColE1 and phi X174 RF inverted repeats, these repeats share a similar temperature dependence. The kinetics of EcoRI cleavage at the centre of the synthetic inverted repeat have been studied in supercoiled and linear molecules. It is found that in the supercoiled molecule this target is not refractory to EcoRI cleavage to an extent which is greater than the resolution of the experiment. We conclude that in this molecule the cruciform is in a dynamic equilibrium with the regular duplex, in which the cruciform constitutes a relatively small subpopulation of conformational species.  相似文献   

15.
In the absence of flanking AT-rich segments, cruciform transition energies of DNA palindromic sequences of random base composition are high and mainly dependent upon the base-stacking and -pairing parameters of the palindromic segment. When AT-rich sequences adjoin palindromes, the transition energy of cruciform extrusion is significantly lowered. An inverse relationship exists between the length of the AT-rich stretch and the cruciform transition energy. Long stretches lower the transition energies more than short stretches. At physiological salt and temperature conditions, equilibrium between cruciform extrusion and absorption for the inverted repeat sequences IRS-B and IRS-C of pBR322 derived plasmids is reached in less than five minutes.  相似文献   

16.
Supercoiled pColIR215 contains a site of pronounced hyper-reactivity towards modification by osmium tetroxide, a reagent known to be single-strand-selective. The site of hypersensitivity has been mapped to the ColE1 inverted repeat, believed to extrude a cruciform in supercoiled DNA. Linear or relaxed plasmids are not modified by the reagent. We conclude that cruciform formation is responsible for the site-selective modification. Fine mapping of the modification site as a function of time has revealed that the initial reaction occurs at the centre of the inverted repeat, i.e., the unpaired loop of the cruciform, but that the modification region rapidly expands outwards from this point.  相似文献   

17.
18.
D. K. Nag  A. Kurst 《Genetics》1997,146(3):835-847
Palindromic sequences have the potential to form hairpin or cruciform structures, which are putative substrates for several nucleases and mismatch repair enzymes. A genetic method was developed to detect such structures in vivo in the yeast Saccharomyces cerevisiae. Using this method we previously showed that short hairpin structures are poorly repaired by the mismatch repair system in S. cerevisiae. We show here that mismatches, when present in the stem of the hairpin structure, are not processed by the repair machinery, suggesting that they are treated differently than those in the interstrand base-paired duplex DNA. A 140-bp-long palindromic sequence, on the contrary, acts as a meiotic recombination hotspot by generating a site for a double-strand break, an initiator of meiotic recombination. We suggest that long palindromic sequences undergo cruciform extrusion more readily than short ones. This cruciform structure then acts as a substrate for structure-specific nucleases resulting in the formation of a double-strand break during meiosis in yeast. In addition, we show that residual repair of the short hairpin structure occurs in an MSH2-independent pathway.  相似文献   

19.
S A Khan  R P Novick 《Plasmid》1980,4(2):148-154
The erythromycin resistance determinant of Staphylococcus aureus plasmid pI258 resides on a 5.3 kb transposon, Tn551. We have determined DNA sequences surrounding the junctions between the transposon and the flanking DNA in the wild-type plasmid, in an insertion into a second plasmid, and in two transposon-related deletions. The ends of the transposon consist of an inverted repeat of 40 base pairs flanked by a direct repeat of 5, thus placing the transposon in the same class as Tn3, IS2, Tn501, gamma delta, and bacteriophage Mu. Interestingly, we find that the terminal sequences of the 40 base pairs inverted repeat are very similar to the ends of Tn3, a transposon which one would not have expected to show any relation to Tn551. This result suggests common ancestry for Tn3 and Tn551. The inverted repeat sequence of Tn551 also contains (with one additional inserted base) the internal heptanucleotide sequence which has been found to be common to most of the transposable elements that generate 5-base pair direct repeat sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号