首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zoothamnium niveum is a giant, colonial marine ciliate from sulfide-rich habitats obligatorily covered with chemoautotrophic, sulfide-oxidizing bacteria which appear as coccoid rods and rods with a series of intermediate shapes. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the ectosymbiont of Z. niveum belongs to only one pleomorphic phylotype. The Z. niveum ectosymbiont is only moderately related to previously identified groups of thiotrophic symbionts within the Gammaproteobacteria, and shows highest 16S rRNA sequence similarity with the free-living sulfur-oxidizing bacterial strain ODIII6 from shallow-water hydrothermal vents of the Mediterranean Sea (94.5%) and an endosymbiont from a deep-sea hydrothermal vent gastropod of the Indian Ocean Ridge (93.1%). A replacement of this specific ectosymbiont by a variety of other bacteria was observed only for senescent basal parts of the host colonies. The taxonomic status “Candidatus Thiobios zoothamnicoli” is proposed for the ectosymbiont of Z. niveum based on its ultrastructure, its 16S rRNA gene, the intergenic spacer region, and its partial 23S rRNA gene sequence.  相似文献   

2.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the “Synergistes” phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the “Synergistes” phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The “Synergistes” phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, “Candidatus Tammella caduceiae,” for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

3.
We investigated the fine-scale population structure of the “Candidatus Accumulibacter” lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of “Candidatus Accumulibacter” 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the “Candidatus Accumulibacter” lineage. Sequences from at least five clades of “Candidatus Accumulibacter” were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using “Candidatus Accumulibacter”-specific 16S rRNA and “Candidatus Accumulibacter” clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total “Candidatus Accumulibacter” lineage and the relative distributions and abundances of the five “Candidatus Accumulibacter” clades. The qPCR-based estimation of the total “Candidatus Accumulibacter” fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined “Candidatus Accumulibacter” clades. The relative distributions of “Candidatus Accumulibacter” clades varied among different EBPR systems and also temporally within a system. Our results suggest that the “Candidatus Accumulibacter” lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.  相似文献   

4.
Marine sponges (Porifera) harbor large amounts of commensal microbial communities within the sponge mesohyl. We employed 16S rRNA gene library construction using specific PCR primers to provide insights into the phylogenetic identity of an abundant sponge-associated bacterium that is morphologically characterized by the presence of a membrane-bound nucleoid. In this study, we report the presence of a previously unrecognized evolutionary lineage branching deeply in the domain Bacteria that is moderately related to the Planctomycetes, Verrucomicrobia, and Chlamydia lines of decent. Because members of this lineage showed <75% 16S rRNA gene sequence similarity to known bacterial phyla, we suggest the status of a new candidate phylum, named “Poribacteria”, to acknowledge the affiliation of the new bacterium with sponges. The affiliation of the morphologically conspicuous sponge bacterium with the novel phylogenetic lineage was confirmed by fluorescence in situ hybridization with newly designed probes targeting different sites of the poribacterial 16S rRNA. Consistent with electron microscopic observations of cell compartmentalization, the fluorescence signals appeared in a ring-shaped manner. PCR screening with “Poribacteria”-specific primers gave positive results for several other sponge species, while samples taken from the environment (seawater, sediments, and a filter-feeding tunicate) were PCR negative. In addition to a report for Planctomycetes, this is the second report of cell compartmentalization, a feature that was considered exclusive to the eukaryotic domain, in prokaryotes.  相似文献   

5.
Bacterial symbionts that resembled mollicutes were discovered in the marine bryozoan Watersipora arcuata in the 1980s. In this study, we used PCR and sequencing of 16S rRNA genes, specific fluorescence in situ hybridization, and phylogenetic analysis to determine that the bacterial symbionts of “W. subtorquata” and “W. arcuata” from several locations along the California coast are actually closely related α-Proteobacteria, not mollicutes. We propose the names “Candidatus Endowatersipora palomitas” and “Candidatus Endowatersipora rubus” for the symbionts of “W. subtorquata” and “W. arcuata,” respectively.  相似文献   

6.
The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.  相似文献   

7.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, “Candidatus Endobugula sertula.” “Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with “Candidatus E. sertula.” In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status “Candidatus Endobugula glebosa” is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

8.
Marginal chlorosis is a new disease of strawberry in which the uncultured phloem-restricted proteobacterium “Candidatus Phlomobacter fragariae” is involved. In order to identify the insect(s) vector(s) of this bacterium, homopteran insects have been captured. Because a PCR test based on the 16S rRNA gene (rDNA) applied to these insects was unable to discriminate between “P. fragariae” and other insect-associated proteobacteria, isolation of “P. fragariae” genes other than 16S rDNA was undertaken. Using comparative randomly amplified polymorphic DNAs, an amplicon was specifically amplified from “P. fragariae”-infected strawberry plants. It encodes part of a “P. fragariae” open reading frame sharing appreciable homology with the spoT gene from other proteobacteria. A spoT-based PCR test combined with restriction fragment length polymorphisms was developed and was able to distinguish “P. fragariae” from other insect bacteria. None of the many leafhoppers and psyllids captured during several years in and around infected strawberry fields was found to carry “P. fragariae.” Interestingly however, the “P. fragariae” spoT sequence could be easily detected in whiteflies proliferating on “P. fragariae”-infected strawberry plants under confined greenhouse conditions but not on control whiteflies, indicating that these insects can become infected with the bacterium.  相似文献   

9.
We characterized the intracellular symbiotic bacteria of the hematophagous glossiphoniid leeches Placobdelloides siamensis and a Parabdella sp. These leeches have a specialized structure called an “esophageal organ,” the cells of which harbor bacterial symbionts. From the esophageal organ of each species, a 1.5-kb eubacterial 16S rRNA gene segment was amplified by PCR, cloned, and sequenced. Diagnostic PCR detected the symbiont in the esophageal organ and intestine. Phylogenetic analysis of the 16S rRNA gene(s) demonstrated that the symbionts from the leeches formed a monophyletic group in a well-defined clade containing endosymbiotic bacteria of plant sap-feeding insects in the γ-subdivision of the Proteobacteria. The nucleotide compositions of the 16S rRNA gene from the leech symbionts were highly AT biased (53.7%).  相似文献   

10.
Uncultivated bacteria that densely colonize the midgut glands (hepatopancreas) of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda) were identified by cloning and sequencing of their 16S rRNA genes. Phylogenetic analysis revealed that these symbionts represent a novel lineage of the Mollicutes and are only distantly related (<82% sequence identity) to members of the Mycoplasmatales and Entomoplasmatales. Fluorescence in situ hybridization with a specific oligonucleotide probe confirmed that the amplified 16S rRNA gene sequences indeed originated from a homogeneous population of symbionts intimately associated with the epithelial surface of the hepatopancreas. The same probe also detected morphotypically identical symbionts in other crinochete isopods. Scanning and transmission electron microscopy revealed uniform spherical bacterial cells without a cell wall, sometimes interacting with the microvilli of the brush border by means of stalk-like cytoplasmic appendages, which also appeared to be involved in cell division through budding. Based on the isolated phylogenetic position and unique cytological properties, the provisional name "Candidatus Hepatoplasma crinochetorum" is proposed for this new taxon of Mollicutes colonizing the hepatopancreas of P. scaber.  相似文献   

11.
Microscopic examination of the hemolymph from diseased daphniids in 17 lakes in southwestern Michigan and five rock pools in southern Finland revealed the presence of tightly coiled bacteria that bore striking similarities to the drawings of a morphologically unique pathogen, “Spirobacillus cienkowskii,” first described by Elya Metchnikoff more than 100 years ago. The uncultivated microbe was identified as a deeply branching member of the Deltaproteobacteria through phylogenetic analyses of two conserved genes: the 16S rRNA-encoding gene (rrs) and the β-subunit of topoisomerase (gyrB). Fluorescence in situ hybridization confirmed that the rRNA gene sequence originated from bacteria with the tightly coiled morphology. Microscopy and PCR amplification with pathogen-specific primers confirmed infections by this bacterium in four species of Daphnia: Daphnia dentifera, D. magna, D. pulicaria, and D. retrocurva. Extensive field surveys reveal that this bacterium is widespread geographically and able to infect many different cladoceran species. In a survey of populations of D. dentifera in lakes in Michigan, we found the bacterium in 17 of 18 populations studied. In these populations, 0 to 12% of the individuals were infected, with an average of 3% during mid-summer and early autumn. Infections were less common in rock pool populations of D. magna in southern Finland, where the pathogen was found in 5 of 137 populations. The broad geographic distribution, wide host range, and high virulence of S. cienkowskii suggest it plays an important role in the ecology and evolution of daphniids.  相似文献   

12.
Fluorescent in situ hybridization with a 16S rRNA probe specific for Verrucomicrobia was used to (i) confirm the division-level identity of and (ii) study the behavior of the obligate intracellular verrucomicrobium “Candidatus Xiphinematobacter” in its nematode hosts. Endosymbionts in the egg move to the pole where the gut primordium arises; hence, they populate the intestinal epithelia of juvenile worms. During the host's molt to adult female, the endosymbionts concentrate around the developing ovaries to occupy the ovarian wall. Some bacteria are enclosed in the ripening oocytes for vertical transmission. Verrucomicrobia in males stay outside the testes because the tiny spermatozoids are not suitable for transmission of cytoplasmic bacteria.  相似文献   

13.
Genetic and phylogenetic characterization of Cryptosporidium isolates at two loci (18S rRNA gene and heat shock gene) from both Australian and United States dogs demonstrated that dog-derived Cryptosporidium isolates had a distinct genotype which is conserved across geographic areas. Phylogenetic analysis provided support for the idea that the “dog” genotype is, in fact, a valid species.  相似文献   

14.
Ticks are important vectors for many emerging pathogens. However, they are also infected with many symbionts and commensals, often competing for the same niches. In this paper, we characterize the microbiome of Amblyomma americanum (Acari: Ixodidae), the lone star tick, in order to better understand the evolutionary relationships between pathogens and nonpathogens. Multitag pyrosequencing of prokaryotic 16S rRNA genes (16S rRNA) was performed on 20 lone star ticks (including males, females, and nymphs). Pyrosequencing of the rickettsial sca0 gene (also known as ompA or rompA) was performed on six ticks. Female ticks had less diverse microbiomes than males and nymphs, with greater population densities of Rickettsiales. The most common members of Rickettsiales were “Candidatus Rickettsia amblyommii” and “Candidatus Midichloria mitochondrii.” “Ca. Rickettsia amblyommii” was 2.6-fold more common in females than males, and there was no sequence diversity in the sca0 gene. These results are consistent with a predominantly vertical transmission pattern for “Ca. Rickettsia amblyommii.”  相似文献   

15.
Ecological studies on three bacterial lineages symbiotic in aphids have shown that they impose a variety of effects on their hosts, including resistance to parasitoids and tolerance to heat stress. Phylogenetic analyses of partial sequences of gyrB and recA are consistent with previous analyses limited to 16S rRNA gene sequences and yield improved confidence of the evolutionary relationships of these symbionts. All three symbionts are in the Enterobacteriaceae. One of the symbionts, here given the provisional designation “Candidatus Serratia symbiotica,” is a Serratia species that has acquired a symbiotic lifestyle. The other two symbionts, here designated “Candidatus Hamiltonella defensa” and “Candidatus Regiella insecticola,” are sister groups to one another and together show a relationship to species of Photorhabdus.  相似文献   

16.
All cultivated isolates of the bacterial order Thermotogales are either thermophiles or hyperthermophiles, but Thermotogales 16S rRNA gene sequences have been detected in many mesophilic anaerobic and microaerophilic environments, particularly within communities involved in the remediation of pollutants. Here we provide metagenomic evidence for the existence of Thermotogales lineages, which we informally call “mesotoga,” that are adapted to growth at lower temperatures. Two fosmid clones containing mesotoga DNA, originating from a low-temperature enrichment culture that degrades a polychlorinated biphenyl congener, were sequenced. Phylogenetic analysis clearly puts this bacterial lineage within the Thermotogales order, with the rRNA gene trees and 21 of 58 open reading frames strongly supporting this relationship. An analysis of protein sequence composition showed that mesotoga proteins are adapted to function at lower temperatures than are their identifiable homologs from thermophilic and hyperthermophilic members of the order Thermotogales, supporting the notion that this bacterium lives and grows optimally at lower temperatures. The phylogenetic analysis suggests that the mesotoga lineage from which our fosmids derive has used both the acquisition of genes from its neighbors and the modification of existing thermophilic sequences to adapt to a mesophilic lifestyle.  相似文献   

17.
For simultaneous identification of members of the betaproteobacterial order “Rhodocyclales” in environmental samples, a 16S rRNA gene-targeted oligonucleotide microarray (RHC-PhyloChip) consisting of 79 probes was developed. Probe design was based on phylogenetic analysis of available 16S rRNA sequences from all cultured and as yet uncultured members of the “Rhodocyclales.” The multiple nested probe set was evaluated for microarray hybridization with 16S rRNA gene PCR amplicons from 29 reference organisms. Subsequently, the RHC-PhyloChip was successfully used for cultivation-independent “Rhodocyclales” diversity analysis in activated sludge from an industrial wastewater treatment plant. The implementation of a newly designed “Rhodocyclales”-selective PCR amplification system prior to microarray hybridization greatly enhanced the sensitivity of the RHC-PhyloChip and thus enabled the detection of “Rhodocyclales” populations with relative abundances of less than 1% of all bacteria (as determined by fluorescence in situ hybridization) in the activated sludge. The presence of as yet uncultured Zoogloea-, Ferribacterium/Dechloromonas-, and Sterolibacterium-related bacteria in the industrial activated sludge, as indicated by the RHC-PhyloChip analysis, was confirmed by retrieval of their 16S rRNA gene sequences and subsequent phylogenetic analysis, demonstrating the suitability of the RHC-PhyloChip as a novel monitoring tool for environmental microbiology.  相似文献   

18.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated “type 021N,” were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and “type 021N” strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from “type 021N” filaments. The outer cell wall appeared more complex in “type 021N” strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of “type 021N” bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

19.
Symbiotic bacteria residing in the hindgut chambers of scarab beetle larvae may be useful in paratransgenic approaches to reduce larval root-feeding activities on agricultural crops. We compared the bacterial community profiles associated with the hindgut walls of individual Dermolepida albohirtum third-instar larvae over 2 years and those associated with their plant root food source among different geographic regions. Denaturing gradient gel electrophoresis analysis was used with universal and Actinobacteria-specific 16S rRNA primers to reveal a number of taxa that were found consistently in all D. albohirtum larvae but not in samples from their food source, sugarcane roots. These taxa included representatives from the “Endomicrobia,” Firmicutes, Proteobacteria, and Actinobacteria and were related to previously described bacteria from the intestines of other scarab larvae and termites. These universally distributed taxa have the potential to form vertically transmitted symbiotic associations with these insects.  相似文献   

20.
Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely halophilic bacteria that had ecological relevance seemed to be easier to culture than their archaeal counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号