首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro studies suggest that the mitochondrial glycerol-3-phosphate acyltransferase-1 (mtGPAT1) isoform catalyzes the initial and rate-controlling step in glycerolipid synthesis and aids in partitioning acyl-CoAs toward triacylglycerol synthesis and away from degradative pathways. To determine whether the absence of mtGPAT1 would increase oxidation of acyl-CoAs and restrict the development of hepatic steatosis, we fed wild type and mtGPAT1-/- mice a diet high in fat and sucrose (HH) for 4 months to induce the development of obesity and a fatty liver. Control mice were fed a diet low in fat and sucrose (LL). With the HH diet, absence of mtGPAT1 resulted in increased partitioning of acyl-CoAs toward oxidative pathways, demonstrated by 60% lower hepatic triacylglycerol content and 2-fold increases in plasma beta-hydroxybutyrate, acylcarnitines, and hepatic mRNA expression of mitochondrial HMG-CoA synthase. Despite the increase in fatty acid oxidation, liver acyl-CoA levels were 3-fold higher in the mtGPAT1-/- mice fed both diets. A lack of difference in CPT1 and FAS mRNA expression between genotypes suggested that the increased acyl-CoA content was not because of increased de novo synthesis, but instead, to an impaired ability to use long-chain acyl-CoAs derived from the diet, even when the dietary fat content was low. Hyperinsulinemia and reduced glucose tolerance on the HH diet was greater in the mtGPAT1-/- mice, which did not suppress the expression of the gluconeogenic genes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. This study demonstrates that mtGPAT1 is essential for normal acyl-CoA metabolism, and that the absence of hepatic mtGPAT1 results in the partitioning of fatty acids away from triacylglycerol synthesis and toward oxidation and ketogenesis.  相似文献   

2.
Mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 (mtGPAT1) controls the first step of triacylglycerol (TAG) synthesis and is critical to the understanding of chronic metabolic disorders such as primary nonalcoholic fatty liver disease (NAFLD). Anthocyanin, a large group of polyphenols, was negatively correlated with hepatic lipid accumulation, but its impact on mtGPAT1 activity and NAFLD has yet to be determined. Hepatoma cell lines and KKAy mice were used to investigate the impact of anthocyanin on high glucose-induced mtGPAT1 activation and hepatic steatosis. Treatment with anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g) reduced high glucose-induced GPAT1 activity through the prevention of mtGPAT1 translocation from the endoplasmic reticulum to the outer mitochondrial membrane (OMM), thereby suppressing intracellular de novo lipid synthesis. Cy-3-g treatment also increased protein kinase C ζ phosphorylation and membrane translocation in order to phosphorylate the mtF0F1-ATPase β-subunit, reducing its enzymatic activity and thus inhibiting mtGPAT1 activation. In vivo studies further showed that Cy-3-g treatment significantly decreases hepatic mtGPAT1 activity and its presence in OMM isolated from livers, thus ameliorating hepatic steatosis in diabetic KKAy mice. Our findings reveal a novel mechanism by which anthocyanin regulates lipogenesis and thereby inhibits hepatic steatosis, suggesting its potential therapeutic application in diabetes and related steatotic liver diseases.  相似文献   

3.
Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.  相似文献   

4.
Obese obob mice with strong overexpression of the human apolipoprotein C1 (APOC1) exhibit excessive free fatty acid (FFA) and triglyceride (TG) levels and severely reduced body weight (due to the absence of subcutaneous adipose tissue) and skin abnormalities. To evaluate the effects of APOC1 overexpression on hepatic and peripheral insulin sensitivity in a less-extreme model, we generated obob mice with mild overexpression of APOC1 (obob/APOC1(+/-)) and performed hyperinsulinemic clamp analysis. Compared with obob littermates, obob/APOC1(+/-) mice showed reduced body weight (-25%) and increased plasma levels of TG (+632%), total cholesterol (+134%), FFA (+65%), glucose (+73%), and insulin (+49%). Hyperinsulinemic clamp analysis revealed severe whole-body and hepatic insulin resistance in obob/APOC1(+/-) mice and, in addition, increased hepatic uptake of FFA and hepatic TG content. Treatment of obob/APOC1(+/-) mice with rosiglitazone strongly improved whole-body insulin sensitivity as well as hepatic insulin sensitivity, despite a further increase of hepatic fatty acid (FA) uptake and a panlobular increase of hepatic TG accumulation. We conclude that overexpression of APOC1 prevents rosiglitazone-induced peripheral FA uptake leading to severe hepatic steatosis. Interestingly, despite rosiglitazone-induced hepatic steatosis, hepatic insulin sensitivity improves dramatically. We hypothesize that the different hepatic fat accumulation and/or decrease in FA intermediates has a major effect on the insulin sensitivity of the liver.  相似文献   

5.
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress have been implicated in hepatic steatosis and insulin resistance. The present study investigated their roles in the development of hepatic steatosis and insulin resistance during de novo lipogenesis (DNL) compared to extrahepatic lipid oversupply. Male C57BL/6J mice were fed either a high fructose (HFru) or high fat (HFat) diet to induce DNL or lipid oversupply in/to the liver. Both HFru and HFat feeding increased hepatic triglyceride within 3 days (by 3.5 and 2.4 fold) and the steatosis remained persistent from 1 week onwards (p<0.01 vs Con). Glucose intolerance (iAUC increased by ~60%) and blunted insulin-stimulated hepatic Akt and GSK3β phosphorylation (~40-60%) were found in both feeding conditions (p<0.01 vs Con, assessed after 1 week). No impairment of mitochondrial function was found (oxidation capacity, expression of PGC1α, CPT1, respiratory complexes, enzymatic activity of citrate synthase & β-HAD). As expected, DNL was increased (~60%) in HFru-fed mice and decreased (32%) in HFat-fed mice (all p<0.05). Interestingly, associated with the upregulated lipogenic enzymes (ACC, FAS and SCD1), two (PERK/eIF2α and IRE1/XBP1) of three ER stress pathways were significantly activated in HFru-fed mice. However, no significant ER stress was observed in HFat-fed mice during the development of hepatic steatosis. Our findings indicate that HFru and HFat diets can result in hepatic steatosis and insulin resistance without obvious mitochondrial defects via different lipid metabolic pathways. The fact that ER stress is apparent only with HFru feeding suggests that ER stress is involved in DNL per se rather than resulting from hepatic steatosis or insulin resistance.  相似文献   

6.
Conjugated linoleic acid (CLA) induces insulin resistance preceded by rapid depletion of the adipokines leptin and adiponectin, increased inflammation, and hepatic steatosis in mice. To determine the role of leptin in CLA-mediated insulin resistance and hepatic steatosis, recombinant leptin was coadministered with dietary CLA in ob/ob mice to control leptin levels and to, in effect, negate the leptin depletion effect of CLA. In a 2 x 2 factorial design, 6 week old male ob/ob mice were fed either a control diet or a diet supplemented with CLA and received daily intraperitoneal injections of either leptin or vehicle for 4 weeks. In the absence of leptin, CLA significantly depleted adiponectin and induced insulin resistance, but it did not increase hepatic triglyceride concentrations or adipose inflammation, marked by interleukin-6 and tumor necrosis factor-alpha mRNA expression. Insulin resistance, however, was accompanied by increased macrophage infiltration (F4/80 mRNA) in adipose tissue. In the presence of leptin, CLA depleted adiponectin but did not induce insulin resistance or macrophage infiltration. Despite this, CLA induced hepatic steatosis. In summary, CLA worsened insulin resistance without evidence of inflammation or hepatic steatosis in mice after 4 weeks. In the presence of leptin, CLA failed to worsen insulin resistance but induced hepatic steatosis in ob/ob mice.  相似文献   

7.
Obesity-associated hepatic steatosis is a manifestation of selective insulin resistance whereby lipogenesis remains sensitive to insulin but the ability of insulin to suppress glucose production is impaired. We created a mouse model of liver-specific knockdown of p70 S6 kinase (S6K) (L-S6K-KD) by systemic delivery of an adeno-associated virus carrying a shRNA for S6K and examined the effects on steatosis and insulin resistance. High fat diet (HFD) fed L-S6K-KD mice showed improved glucose tolerance and systemic insulin sensitivity compared with controls, with no changes in food intake or body weight. The induction of lipogenic gene expression was attenuated in the L-S6K-KD mice with decreased sterol regulatory element-binding protein (SREBP)-1c expression and mature SREBP-1c protein, as well as decreased steatosis on HFD. Our results demonstrate the importance of S6K: 1) as a modulator of the hepatic response to fasting/refeeding, 2) in the development of steatosis, and 3) as a key node in selective hepatic insulin resistance in obese mice.  相似文献   

8.
Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mice were treated with the LXR agonist GW-3965 for 10 days. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp studies. Hepatic glucose production (HGP) and metabolic clearance rate (MCR) of glucose were determined with stable isotope techniques. Blood glucose and hepatic and whole body insulin sensitivity remained unaffected upon treatment in lean mice, despite increased hepatic triglyceride contents (61.7 +/- 7.2 vs. 12.1 +/- 2.0 nmol/mg liver, P < 0.05). In ob/ob mice, LXR activation resulted in lower blood glucose levels and significantly improved whole body insulin sensitivity. GW-3965 treatment did not affect HGP under normo- and hyperinsulinemic conditions, despite increased hepatic triglyceride contents (221 +/- 13 vs. 176 +/- 19 nmol/mg liver, P < 0.05). Clamped MCR increased upon GW-3965 treatment (18.2 +/- 1.0 vs. 14.3 +/- 1.4 ml x kg(-1) x min(-1), P = 0.05). LXR activation increased white adipose tissue mRNA levels of Glut4, Acc1 and Fasin ob/ob mice only. In conclusion, LXR-induced blood glucose lowering in ob/ob mice was attributable to increased peripheral glucose uptake and metabolism, physiologically reflected in a slightly improved insulin sensitivity. Remarkably, steatosis associated with LXR activation did not affect hepatic insulin sensitivity.  相似文献   

9.
Kenerson HL  Yeh MM  Yeung RS 《PloS one》2011,6(3):e18075
Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This 'resistant' phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism.  相似文献   

10.
Loss-of-function mutations in 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 in humans and mice result in loss of both the white and brown adipose tissues from birth. AGPAT2 generates precursors for the synthesis of glycerophospholipids and triacylglycerols. Loss of adipose tissue, or lipodystrophy, results in hyperinsulinemia, diabetes mellitus, and severe hepatic steatosis. Here, we analyzed biochemical properties of human AGPAT2 and its close homolog, AGPAT1, and we studied their role in liver by transducing their expression via recombinant adenoviruses in Agpat2(-/-) mice. The in vitro substrate specificities of AGPAT1 and AGPAT2 are quite similar for lysophosphatidic acid and acyl-CoA. Protein homology modeling of both the AGPATs with glycerol-3-phosphate acyltransferase 1 (GPAT1) revealed that they have similar tertiary protein structure, which is consistent with their similar substrate specificities. When co-expressed, both isoforms co-localize to the endoplasmic reticulum. Despite such similarities, restoring AGPAT activity in liver by overexpression of either AGPAT1 or AGPAT2 in Agpat2(-/-) mice failed to ameliorate the hepatic steatosis. From these studies, we suggest that the role of AGPAT1 or AGPAT2 in liver lipogenesis is minimal and that accumulation of liver fat is primarily a consequence of insulin resistance and loss of adipose tissue in Agpat2(-/-) mice.  相似文献   

11.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and rate-limiting step of glycerolipid synthesis. Two distinct GPAT isoenzymes had been identified in mammalian tissues, an N-ethylmaleimide (NEM)-sensitive isoform in the endoplasmic reticulum membrane (microsomal GPAT) and an NEM-resistant form in the outer mitochondrial membrane (mtGPAT). Although only mtGPAT has been cloned, the microsomal and mitochondrial GPAT isoforms can be distinguished, because they differ in acyl-CoA substrate preference, sensitivity to inhibition by dihydroxyacetone phosphate and polymixin B, temperature sensitivity, and ability to be activated by acetone. The preponderance of evidence supports a role for mtGPAT in synthesizing the precursors for triacylglycerol synthesis. In mtGPAT(-/-) mice, PCR genotyping and Northern analysis showed successful knockout of mtGPAT; however, we detected a novel NEM-sensitive GPAT activity in mitochondrial fractions and an anti-mtGPAT immunoreactive protein in liver mitochondria, but not in microsomes. Rigorous analysis using two-dimensional gel electrophoresis revealed that the anti-mtGPAT immunoreactive proteins in wild type and mtGPAT(-/-) liver mitochondria have different isoelectric points. These results suggested the presence of a second GPAT in liver mitochondria from mtGPAT(-/-) mice. Characterization of this GPAT activity in liver from mtGPAT null mice showed that, unlike the mtGPAT activity in wild type samples, activity in mtGPAT knockout mitochondria did not prefer palmitoyl-CoA, was sensitive to inactivation by NEM, was inhibited by dihydroxyacetone phosphate and polymixin B, was temperature-sensitive, and was not activated by acetone. We conclude that a novel GPAT (mtGPAT2) with antigenic epitopes similar to those of mtGPAT is detectable in mitochondria from the livers of mtGPAT(-/-) mice.  相似文献   

12.
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp−/−) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp−/− mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp−/− mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp−/− mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp−/− mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp−/− mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp−/− mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp−/− mice.  相似文献   

13.
Accumulation of triglycerides (TG) in the liver is generally associated with hepatic insulin resistance. We questioned whether acute hepatic steatosis induced by pharmacological blockade of beta-oxidation affects hepatic insulin sensitivity, i.e., insulin-mediated suppression of VLDL production and insulin-induced activation of phosphatidylinositol 3-kinase (PI3-kinase) and PKB. Tetradecylglycidic acid (TDGA), an inhibitor of carnitine palmitoyl transferase-1 (CPT1), was used for this purpose. Male C57BL/6J mice received 30 mg/kg TDGA or its solvent intraperitoneally and were subsequently fasted for 12 h. CPT1 inhibition resulted in severe microvesicular hepatic steatosis (19.9 +/- 8.3 vs. 112.4 +/- 25.2 nmol TG/mg liver, control vs. treated, P < 0.05) with elevated plasma nonesterified fatty acid (0.68 +/- 0.25 vs. 1.21 +/- 0.41 mM, P < 0.05) and plasma TG (0.39 +/- 0.16 vs. 0.60 +/- 0.10 mM, P < 0.05) concentrations. VLDL-TG production rate was not affected on CPT1 inhibition (74.9 +/- 15.2 vs. 79.1 +/- 12.8 mumol TG.kg(-1).min(-1), control vs. treated) although treated mice secreted larger VLDL particles (59.3 +/- 3.6 vs. 66.6 +/- 4.5 nm diameter, P < 0.05). Infusion of insulin under euglycemic conditions suppressed VLDL production rate in control and treated mice by 43 and 54%, respectively, with formation of smaller VLDL particles (51.2 +/- 2.5 and 53.2 +/- 2.8 nm diameter). Insulin-induced insulin receptor substrate (IRS)1- and IRS2-associated PI3-kinase activity and PKB-phosphorylation were not affected on TDGA treatment. In conclusion, acute hepatic steatosis caused by pharmacological inhibition of beta-oxidation is not associated with reduced hepatic insulin sensitivity, indicating that hepatocellular fat content per se is not causally related to insulin resistance.  相似文献   

14.
The aims of this study were designed to determine whether liraglutide, a long-acting glucagon-like peptide, could reverse the adverse effects of a diet high in fat that also contained trans-fat and high-fructose corn syrup (ALIOS diet). Specifically, we examined whether treatment with liraglutide could reduce hepatic insulin resistance and steatosis as well as improve cardiac function. Male C57BL/6J mice were pair fed or fed ad libitum either standard chow or the ALIOS diet. After 8 wk the mice were further subdivided and received daily injections of either liraglutide or saline for 4 wk. Hyperinsulinemic-euglycemic clamp studies were performed after 6 wk, revealing hepatic insulin resistance. Glucose tolerance and insulin resistance tests were performed at 8 and 12 wk prior to and following liraglutide treatment. Liver pathology, cardiac measurements, blood chemistry, and RNA and protein analyses were performed. Clamp studies revealed hepatic insulin resistance after 6 wk of ALIOS diet. Liraglutide reduced visceral adiposity and liver weight (P < 0.001). As expected, liraglutide improved glucose and insulin tolerance. Liraglutide improved hypertension (P < 0.05) and reduced cardiac hypertrophy. Surprisingly, liver from liraglutide-treated mice had significantly higher levels of fatty acid binding protein, acyl-CoA oxidase II, very long-chain acyl-CoA dehydrogenase, and microsomal triglyceride transfer protein. We conclude that liraglutide reduces the harmful effects of an ALIOS diet by improving insulin sensitivity and by reducing lipid accumulation in liver through multiple mechanisms including, transport, and increase β-oxidation.  相似文献   

15.
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease   总被引:49,自引:0,他引:49  
Short term high fat feeding in rats results specifically in hepatic fat accumulation and provides a model of non-alcoholic fatty liver disease in which to study the mechanism of hepatic insulin resistance. Short term fat feeding (FF) caused a approximately 3-fold increase in liver triglyceride and total fatty acyl-CoA content without any significant increase in visceral or skeletal muscle fat content. Suppression of endogenous glucose production (EGP) by insulin was diminished in the FF group, despite normal basal EGP and insulin-stimulated peripheral glucose disposal. Hepatic insulin resistance could be attributed to impaired insulin-stimulated IRS-1 and IRS-2 tyrosine phosphorylation. These changes were associated with activation of PKC-epsilon and JNK1. Ultimately, hepatic fat accumulation decreased insulin activation of glycogen synthase and increased gluconeogenesis. Treatment of the FF group with low dose 2,4-dinitrophenol to increase energy expenditure abrogated the development of fatty liver, hepatic insulin resistance, activation of PKC-epsilon and JNK1, and defects in insulin signaling. In conclusion, these data support the hypothesis hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and activating PKC-epsilon and JNK1, which may interfere with tyrosine phosphorylation of IRS-1 and IRS-2 and impair the ability of insulin to activate glycogen synthase.  相似文献   

16.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   

17.
18.
Suppressor of cytokine signaling 1 (SOCS1) is an intracellular inhibitor of cytokine, growth factor, and hormone signaling. Socs1-/- mice die before weaning from a multiorgan inflammatory disease. Neonatal Socs1-/- mice display severe hypoglycemia and hypoinsulinemia. Concurrent interferon gamma gene deletion (Ifng-/-) prevented inflammation and corrected the hypoglycemia. In hyperinsulinemic clamp studies, however, Socs1-/- Ifng-/- mice had enhanced hepatic insulin sensitivity demonstrated by greater suppression of endogenous glucose production compared with controls with no difference in glucose disposal. Socs1-/- Ifng-/- mice had elevated liver insulin receptor substrate 2 expression (IRS-2) and IRS-2 tyrosine phosphorylation. This was associated with lower phosphoenolpyruvate carboxykinase mRNA expression. These effects were not associated with elevated hepatic AMP-activated protein kinase activity. Hepatic insulin sensitivity and IRS-2 levels play central roles in the pathogenesis of type 2 diabetes. Socs1 deficiency increases IRS-2 expression and enhances hepatic insulin sensitivity in vivo indicating that inhibition of SOCS1 may be a logical strategy in type 2 diabetes.  相似文献   

19.
Obesity is commonly associated with development of insulin resistance and systemic evidence of inflammation. Macrophages contribute to inflammatory amplification in obesity and may contribute directly to insulin resistance and the development of nonalcoholic fatty liver disease through the production of inflammatory cytokines, including tumor necrosis factor (TNF)-alpha. To test this hypothesis, we transplanted male wild-type (WT) and TNF-alpha deficient (KO) mice with either TNF-alpha-sufficient (TNF-alpha(+/+)) or TNF-alpha-deficient (TNF-alpha(-/-)) bone marrow. After consuming a high-fat diet for 26 wk, metabolic and morphometric characteristics of the animals were analyzed. While there were no differences in terms of relative weight gain, body composition analysis yielded a lower relative adipose and higher relative lean mass in mice lacking TNF-alpha, which was partially explained by reduced epididymal fat pad and liver weight. TNF-alpha(-/-) -->KO mice exhibited enhanced insulin sensitivity compared with that observed in TNF-alpha(+/+)-->KO mice; remarkably, no protection against insulin resistance was provided by transplanting TNF-alpha(-/-) bone marrow in WT mice compared with TNF-alpha(+/+)-->WT. The preserved insulin sensitivity seen in TNF-alpha(-/-)-->KO mice provided protection against the development of hepatic steatosis. Taken together, these data indicate that macrophage-derived TNF-alpha contributes to the pattern and extent of fat accumulation and insulin resistance in diet-induced obesity; however, this contribution is negligible in the presence of host-derived TNF-alpha.  相似文献   

20.
Inflammation critically contributes to the development of various metabolic diseases. However, the effects of inhibiting inflammatory signaling on hepatic steatosis and insulin resistance, as well as the underlying mechanisms remain obscure. In the current study, male C57BL/6J mice were fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD-fed mice were respectively treated with p65 siRNA, non-silence control siRNA or vehicle every 4th day for the last 4 weeks. Vehicle-treated (HF) and non-silence siRNA-treated (HFNS) mice displayed overt inflammation, hepatic steatosis and insulin resistance compared with chow-diet-fed (NC) mice. Upon treatment with NF-κB p65 siRNA, HFD-fed (HFPS) mice were protected from hepatic steatosis and insulin resistance. Furthermore, Atg7 and Beclin1 expressions and p-AMPK were increased while p-mTOR was decreased in livers of HFPS mice in relative to HF and HFNS mice. These results suggest a crosslink between NF-κB signaling pathway and liver AMPK/mTOR/autophagy axis in the context of hepatic steatosis and insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号