首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Mitochondrial DNA remains one of the most widely used molecular markers to reconstruct the phylogeny and phylogeography of closely related birds. It has been proposed that bird mitochondrial genomes evolve at a constant rate of ~0.01 substitution per site per million years, that is that they evolve according to a strict molecular clock. This molecular clock is often used in studies of bird mitochondrial phylogeny and molecular dating. However, rates of mitochondrial genome evolution vary among bird species and correlate with life history traits such as body mass and generation time. These correlations could cause systematic biases in molecular dating studies that assume a strict molecular clock. In this study, we overcome this issue by estimating corrected molecular rates for birds. Using complete or nearly complete mitochondrial genomes of 475 species, we show that there are strong relationships between body mass and substitution rates across birds. We use this information to build models that use bird species’ body mass to estimate their substitution rates across a wide range of common mitochondrial markers. We demonstrate the use of these corrected molecular rates on two recently published data sets. In one case, we obtained molecular dates that are twice as old as the estimates obtained using the strict molecular clock. We hope that this method to estimate molecular rates will increase the accuracy of future molecular dating studies in birds.  相似文献   

3.
Through a case study of the controversies surrounding the molecular clock, this paper examines the role of visual representation in the dynamics of scientific controversies. Representations of the molecular clock themselves became objects of controversy and so were not a means for closure. Instead visual representations of the molecular clock became tools for the further articulation of an ongoing controversy.  相似文献   

4.
The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular‐clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular‐clock model can be a challenging exercise, but a number of model‐selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular‐clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock‐model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.  相似文献   

5.
The phylogenetic position of the mesopelagic decabrachian cephalopod Spirula is still a matter of debate. Since hemocyanin has successfully been used to calibrate a molecular clock for many molluscan species, a molecular clock was calculated based on this gene with special attention to the cephalopod genera Spirula and Sepia. The obtained partial sequence comprising ca., one third (3567 bp) of the complete gene is similar to that of Sepia officinalis. The molecular clock was calibrated using the splits of Gastropoda-Cephalopoda (ca. 550 ± 50 mya) and Heterobranchia-Vetigastropoda (ca. 380 ± 10 mya). The resulting hemocyanin-based molecular clock is stable, and the estimated divergence time of Spirulida and Sepiida, some 150 ± 30 million years ago, can be deemed reliable.  相似文献   

6.
7.
A wide variety of biochemical, physiological, and molecular processes are known to have daily rhythms driven by an endogenous circadian clock. While extensive research has greatly improved our understanding of the molecular mechanisms that constitute the circadian clock, the links between this clock and dependent processes have remained elusive. To address this gap in our knowledge, we have used RNA sequencing (RNA–seq) and DNA microarrays to systematically identify clock-controlled genes in the zebrafish pineal gland. In addition to a comprehensive view of the expression pattern of known clock components within this master clock tissue, this approach has revealed novel potential elements of the circadian timing system. We have implicated one rhythmically expressed gene, camk1gb, in connecting the clock with downstream physiology of the pineal gland. Remarkably, knockdown of camk1gb disrupts locomotor activity in the whole larva, even though it is predominantly expressed within the pineal gland. Therefore, it appears that camk1gb plays a role in linking the pineal master clock with the periphery.  相似文献   

8.
Phylogenetic dating is one of the most powerful and commonly used methods of drawing epidemiological interpretations from pathogen genomic data. Building such trees requires considering a molecular clock model which represents the rate at which substitutions accumulate on genomes. When the molecular clock rate is constant throughout the tree then the clock is said to be strict, but this is often not an acceptable assumption. Alternatively, relaxed clock models consider variations in the clock rate, often based on a distribution of rates for each branch. However, we show here that the distributions of rates across branches in commonly used relaxed clock models are incompatible with the biological expectation that the sum of the numbers of substitutions on two neighboring branches should be distributed as the substitution number on a single branch of equivalent length. We call this expectation the additivity property. We further show how assumptions of commonly used relaxed clock models can lead to estimates of evolutionary rates and dates with low precision and biased confidence intervals. We therefore propose a new additive relaxed clock model where the additivity property is satisfied. We illustrate the use of our new additive relaxed clock model on a range of simulated and real data sets, and we show that using this new model leads to more accurate estimates of mean evolutionary rates and ancestral dates.  相似文献   

9.
Bayesian estimates of divergence times based on the molecular clock yield uncertainty of parameter estimates measured by the width of posterior distributions of node ages. For the relaxed molecular clock, previous works have reported that some of the uncertainty inherent to the variation of rates among lineages may be reduced by partitioning data. Here we test this effect for the purely morphological clock, using placental mammals as a case study. We applied the uncorrelated lognormal relaxed clock to morphological data of 40 extant mammalian taxa and 4,533 characters, taken from the largest published matrix of discrete phenotypic characters. The morphologically derived timescale was compared to divergence times inferred from molecular and combined data. We show that partitioning data into anatomical units significantly reduced the uncertainty of divergence time estimates for morphological data. For the first time, we demonstrate that ascertainment bias has an impact on the precision of morphological clock estimates. While analyses including molecular data suggested most divergences between placental orders occurred near the K‐Pg boundary, the partitioned morphological clock recovered older interordinal splits and some younger intraordinal ones, including significantly later dates for the radiation of bats and rodents, which accord to the short‐fuse hypothesis.  相似文献   

10.
11.
The molecular mechanisms whereby the circadian clock responds to temperature changes are poorly understood. The ruin lizard Podarcis sicula has historically proven to be a valuable vertebrate model for exploring the influence of temperature on circadian physiology. It is an ectotherm that naturally experiences an impressive range of temperatures during the course of the year. However, no tools have been available to dissect the molecular basis of the clock in this organism. Here, we report the cloning of three lizard clock gene homologs (Period2, Cryptochrome1, and Clock) that have a close phylogenetic relationship with avian clock genes. These genes are expressed in many tissues and show a rhythmic expression profile at 29 degrees C in light-dark and constant darkness lighting conditions, with phases comparable to their mammalian and avian counterparts. Interestingly, we show that at low temperatures (6 degrees C), cycling clock gene expression is attenuated in peripheral clocks with a characteristic increase in basal expression levels. We speculate that this represents a conserved vertebrate clock gene response to low temperatures. Furthermore, these results bring new insight into the issue of whether circadian clock function is compatible with hypothermia.  相似文献   

12.
Molecular cogs of the insect circadian clock   总被引:1,自引:0,他引:1  
  相似文献   

13.
All eukaryotes, including plants, and most prokaryotes have developed elaborate mechanisms to anticipate external environmental changes associated with the Earth’s rotation. These mechanisms are mediated by a circadian clock, which regulates several physiological and biochemical processes. Microarray experiments using Affymetrix chips that included about 8000 of the 27000 Arabidopsis genes have demonstrated that as much as 6% of that genome may be under the control of this clock. While our understanding of such mechanisms is lagging, molecular genetics studies of Arabidopsis have allowed us to make great progress toward identifying and characterizing components of the plant circadian clock since its first component was isolated in 1995. The generation of 24-h rhythms by this clock appears to rely on mechanisms similar to those found in other organisms. However, an entirely different set of molecular components are recruited to perform these functions in Arabidopsis. In this review, we introduce useful and powerful approaches for identifying clock-associated genes and determining how they can act together in the interlocking feedback loops that comprise this particular clock.  相似文献   

14.
15.
Matsuo T  Ishiura M 《FEBS letters》2011,585(10):1495-1502
The genome of the unicellular green alga Chlamydomonas reinhardtii has both plant-like and animal-like genes. It is of interest to know which types of clock genes this alga has. Recent forward and reverse genetic studies have revealed that its clock has both plant-like and algal clock components. In addition, since C. reinhardtii is a useful model organism also called "green yeast", the identification of clock genes will make C. reinhardtii a powerful model for studying the molecular basis of the eukaryotic circadian clock. In this review, we describe our forward genetic approach in C. reinhardtii and discuss some recent findings about its circadian clock.  相似文献   

16.
A circadian clock, with physiological characteristics similar to those of eukaryotes, functions in the photosynthetic prokaryote, cyanobacteria. The molecular mechanism of this clock has been efficiently dissected using a luciferase reporter gene that reports the status of the clock. A circadian clock gene cluster, kaiABC, has been cloned via rhythm mutants of cyanobacterium, Synechococcus, and many clock mutations mapped to the three kai genes. Although kai genes do not share any homology with clock genes so far identified in eukaryotes, analysis of their expression suggests that a negative feedback control of kaiC expression by KaiC generates the circadian oscillation and that KaiA functions as a positive factor to sustain this oscillation. BioEssays 22:10-15, 2000.  相似文献   

17.
Somites are the precursors of the vertebral column. They segment from the presomitic mesoderm (PSM) that is caudally located and newly generated from the tailbud. Somites form in synchrony on either side of the embryonic midline in a reiterative manner. A molecular clock that operates in the PSM drives this reiterative process. Genetic manipulation in mouse, chick and zebrafish has revealed that the molecular clock controls the activity of the Notch and WNT signaling pathways in the PSM. Disruption of the molecular clock impacts on somite formation causing abnormal vertebral segmentation (AVS). A number of dysmorphic syndromes manifest AVS defects. Interaction between developmental biologists and clinicians has lead to groundbreaking research in this area with the identification that spondylocostal dysostosis (SCD) is caused by mutation in Delta-like 3 (DLL3), Mesoderm posterior 2 (MESP2), and Lunatic fringe (LFNG); three genes that are components of the Notch signaling pathway. This review describes our current understanding of the somitic molecular clock and highlights how key findings in developmental biology can impact on clinical practice.  相似文献   

18.
Recent progress in clock research has revealed major molecular components in the mechanisms responsible for circadian time keeping in mammals. The first vertebrate clock mutation (tau) was discovered in the Syrian hamster more than a decade ago and, using the power of comparative genomics, this gene has now been cloned. We now know that tau is the mammalian homologue of a Drosophila circadian clock component (double-time) that plays an important role in regulating clock protein turnover.  相似文献   

19.
Yuan Q  Lin F  Zheng X  Sehgal A 《Neuron》2005,47(1):115-127
Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to light. Effects of d5-HT1B are synergistic with a mutation in the circadian photoreceptor cryptochrome (CRY) and are mediated by SHAGGY (SGG), Drosophila glycogen synthase kinase 3beta (GSK3beta), which phosphorylates TIM. Levels of serotonin are decreased in flies maintained in extended constant darkness, suggesting that modulation of the clock by serotonin may vary under different environmental conditions. These data identify a molecular connection between serotonin signaling and the central clock component TIM and suggest a homeostatic mechanism for the regulation of circadian photosensitivity in Drosophila.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号