首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-step growth and intracellular growth experiments were performed at high multiplicities of the virus LPP-1 during the infection of the blue-green alga Plectonema boryanum. The eclipse period lasts until 4 hr after infection, the latent period terminates at 6 hr, and the rise period continues until 14 to 16 hr after infection. The burst size was independent of multiplicity of infection over the ranges from 1 to 50. The burst size was 3,000 to 5,000 plaque-forming units (PFU) per infectious center or about 200 PFU per cell. Samples for electron microscopy were taken at characteristic times during the lytic cycle. The first sign of viral infection was the invagination of the photosynthetic lamellae at 3 hr after infection. Mature virions were visible at 4 hr. By 6 to 7 hr, many mature intracellular viral particles could be seen, with lysis beginning at 7 hr. By 10 hr after infection, all infected cells contained mature virions. No evidence for mass migration of performed viral precursors was obtained. The invagination of the lamellae could be prevented by the early addition of chloramphenicol, which implies that this process requires protein synthesis.  相似文献   

2.
The relationship of the intracellular events leading to the production of polyoma pseudovirions in primary mouse embryo cells has been investigated. Replication of polyoma deoxyribonucleic acid (DNA) began 18 hr after infection. Assembly of viral capsid protein occurred 12 hr later. Intracellular fragments of host cell DNA, of the size found in pseudovirions, were first detected 36 hr after infection. The amount of intracellular 14S host DNA that was produced during infection was seven times greater than the amount of polyoma DNA synthesized. The relative pool sizes of polyoma DNA and 14S DNA at the time of virus assembly may dictate the amounts of polyoma virus and pseudovirus produced.  相似文献   

3.
Feng X  Schröer J  Yu D  Shenk T 《Journal of virology》2006,80(17):8371-8378
We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.  相似文献   

4.
Yaba tumor poxvirus has been adapted to continuous in vitro cultivation in monolayers of cercopithecus kidney cells. At 35 C, the minimum replicative cycle, after synchronous infection of CV-1 cells with multiplicity of infection of 135 focusforming units per cell, was 35 hr; however, maximum virus yields were not obtained until 75 hr postinfection (PI). Cytoplasmic incorporation of (3)H-thymidine [viral deoxyribonucleic acid (DNA) synthesis] was detected 3 hr PI and was preceded by synthesis of nonstructural associated antigens (YS). Synthesis of YS antigens was not inhibited by the DNA inhibitor, arabinofuranosyl cytosine (ARA-C). Synthesis of at least two virion structural antigens, although not detected by immunofluorescence until 2 hr after the onset of DNA synthesis, occurred in the presence of ARA-C, indicating potential translation of these structural antigens from parental DNA. The first progeny DNA was completed by 20 hr PI but was not detected in infectious form until 35 hr PI. The maximum rate of progeny DNA completion occurred between 20 and 30 hr PI. DNA synthesis continued 45 to 50 hr PI. The adapted virus retained its oncogenicity and, like the wild type, replicated better at 35 C than at 37 C. A synthetic step associated with viral DNA synthesis appears to be temperature-sensitive.  相似文献   

5.
A comparison of the replication patterns in L cells and in chick embryo (CE) cell cultures was carried out with the Herts strain of Newcastle disease virus (NDV(o)) and with a mutant (NDV(pi)) isolated from persistently infected L cells. A significant amount of virus progeny, 11 plaque-forming units (PFU)/cell, was synthesized in L cells infected with NDV(o), but the infectivity remained cell-associated and disappeared without being detectable in the medium. In contrast, in L cells infected with NDV(pi), progeny virus (30 PFU/cell) was released efficiently upon maturation. It is suggested that the term "covert" rather than "abortive" be used to describe the infection of L cells with NDV(o). In both L and CE cells, the latent period of NDV(pi) was 2 to 4 hr longer than for NDV(o). The delay in synthesis of viral ribonucleic acid (RNA) in the case of NDV(pi) coincided with the delay in the inhibition of host RNA and protein synthesis. Although both NDV(o) and NDV(pi) produced more progeny and more severe cell damage in CE cells than in L cells, the shut-off of host functions was significantly less efficient in CE cells than in L cells. Paradoxically, no detectable interferon was produced in CE cells by either of the viruses, whereas in L cells most of the interferon appeared in the medium after more than 90% of host protein synthesis was inhibited. These results suggest that the absence of induction of interferon synthesis in CE cells infected with NDV is not related to the general shut-off of host cell synthetic mechanisms but rather to the failure of some more specific event to occur. In spite of the fact that NDV(pi) RNA synthesis commenced 2 to 4 hr later than that of NDV(o), interferon was first detected in the medium 8 hr after infection with both viruses. This finding suggests that there is no relation between viral RNA synthesis and the induction of interferon synthesis.  相似文献   

6.
Amsacta moorei entomopoxvirus DNA synthesis was detected in Estigmene acrea cells by [3H]thymidine incorporation 12 hr after virus inoculation. Hybridization of 32P-labeled Amsacta entomopoxvirus DNA to the DNA from virus-infected cells indicated that viral-specific DNA synthesis was initiated between 6 and 12 hr after virus inoculation. A rapid increase in the rate of virus DNA synthesis was detected from 12 to 24 hr after virus inoculation. Amsacta entomopoxvirus protein biosynthesis in E. acrea cells was studied by [su35S]methionine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extracellular virus and virus-containing occlusion bodies were first detected in virus-infected cell cultures 18 hr after virus inoculation. Thirty-seven virus structural proteins, ranging in molecular weight from 13,000 to 208,000 were detected in both occluded and nonoccluded forms of the virus. The biosynthesis of virus structural proteins increased rapidly from 18 to 34 hr after infection. A major viral-induced protein corresponding in molecular weight to viral occlusion body protein (110,000) was detected approximately 24 hr after virus inoculation.  相似文献   

7.
Incorporation of (3)H-thymidine by BSC-1 cells infected with Shope fibroma virus was studied by means of high-resolution electron microscopic radioautography. One-hour pulses with the radioactive precursor were given at various times after infection, during a one-step growth cycle of the virus. In the cytoplasm of infected cells, reacted grains occurred over foci of viroplasm; these foci are believed to represent the true sites of viral deoxyribonucleic acid (DNA) replication. Shope fibroma virus DNA synthesis began before 3 hr postinfection, reached a maximum at 8 to 9 hr, and then declined rapidly. It was demonstrated that the decline in (3)H-thymidine uptake is correlated with the onset of viral morphogenesis. In comparison with the noninfected culture, the nuclear labeling, which reflects host DNA metabolism, was slightly reduced by 4 hr postinfection. Inhibition became more marked as infection progressed, and host DNA synthesis was almost completely suppressed in late stages of viral development.  相似文献   

8.
Inhibition of HeLa Cell Protein Synthesis by the Vaccinia Virion   总被引:42,自引:30,他引:12       下载免费PDF全文
  相似文献   

9.
The effects of Kilham rat virus multiplication were studied in cultured rat embryo cells to examine the mechanisms by which virus infection might be related to developmental defects in rats and hamsters. The virus was found to inhibit motosis and deoxyribonucleic acid (DNA) synthesis within 2 to 10 hr after infection. However, total ribonucleic acid synthesis was relatively unaffected until about 20 hr after infection, and total protein synthesis did not decline significantly until loss of viable cells was apparent in the cultures. No effect on chromosomes was detected. The effect of Kilham rat virus on DNA synthesis appears to be due to inhibition of macromolecular synthesis rather than to an inhibition of uptake of precursors into cells. The effect of the virus on mitosis may be an addition to the effect on DNA synthesis, since mitosis is inhibited even in cultures in which cells are able to divide at the time of infection and which have presumably completed DNA synthesis.  相似文献   

10.
Infection of primary or secondary cultures of Chinese hamster embryo cells with simian virus 40 at a multiplicity of 20 to 50 induced synthesis of the virus-specific intranuclear T antigen in 80 to 90% of the cells within 48 to 72 hr. In the infected cultures, 30 to 50% more cells were recruited into deoxyribonucleic acid (DNA) synthesis than in the controls, whether or not the cultures were confluent. The newly synthesized DNA was mostly cellular, since little virus was produced (as shown by various techniques: immunofluorescence for viral antigen, virus growth curves, and isolation of viral DNA from infected cultures). Transformed cells could be detected a few weeks after infection and produced tumors when inoculated into irradiated animals. Chromosomal changes were observed soon after infection (24 hr). Initially, there was a marked increase in the proportion of polyploid cells (8 to 14%), most of which were chromosomally normal. In a few weeks, a large majority of the infected population was polyploid (30 to 50%). Thus, the polyploid cells have the ability to proliferate. Evidence is presented to suggest that polyploid cells arise by stimulation of cells in the G(1), G(2), or S phases to undergo two or more successive periods of DNA synthesis without an intervening mitosis. With a subsequent loss or redistribution of chromosomal material, this may lead eventually to a biologically transformed cell; thus, it is suggested that the initial event(s) relevant to transformation occurs at the level of control of cellular DNA synthesis.  相似文献   

11.
Effect of cell physiological state on infection by rat virus   总被引:20,自引:18,他引:2       下载免费PDF全文
Infection by rat virus has been studied in cultures of rat embryo cells to evaluate the Margolis-Kilham hypothesis that the virus preferentially infects tissues with actively dividing cells. An enhancement of infection was seen in cultures infected 10 hr after fresh medium was added as compared to infection of stationary cultures (infected before addition of fresh medium). Since addition of fresh medium stimulates deoxyribonucleic acid (DNA) synthesis, the number of cells per culture synthesizing DNA at the time of infection was compared with the proportion of cells which synthesized viral protein. Cells were infected before the medium change and 10 or 24 hr after the medium change and were pulse-labeled with 3H-thymidine at the time virus was added. The cells were allowed to initiate viral protein synthesis before they were fixed and stained with fluorescein-conjugated anti-rat virus serum. Fluorescence microscopy permitted both labels to be counted simultaneouly and showed that the greatest proportion of cells synthesizing viral protein were those which had incorporated 3H-thymidine at the time of infection.  相似文献   

12.
Terrinha, António M. (National Laboratory for Veterinary Research, Lisbon, Portugal), José D. Vigário, José L. Nunes Petisca, J. Moura Nunes, and Armando L. Bastos. Autoradiographic study on sheeppox virus infection. J. Bacteriol. 90:1703-1709. 1965.-An autoradiographic study of sheep embryo cell cultures infected with sheeppox virus showed that viral deoxyribonucleic acid (DNA) synthesis starts at 10 to 11 hr after infection. The number of cells which supported viral DNA synthesis increased until 22 to 23 hr. The extent of cytoplasmic continuity between cells might permit the cell-to-cell transfer of mature virus or perhaps viral DNA. There is evidence of an inhibitory action on cellular DNA synthesis in cells which supported viral DNA synthesis, but, in all cellular populations infected, a small proportion of cells was encountered which supported viral DNA synthesis in compartment S. No evidence for cellular division of sheeppox virus-infected cells has been found. Enzymatic digestion by deoxyribonuclease combined with autoradiography provided an indirect demonstration of the time at which the first viral structural proteins were found to be synthesized, that is, 18 hr after infection. A progressive increase in synthesis of viral structural proteins was demonstrated. Virus maturation occurred within the cells in the cytoplasm, predominantly in the same sites as viral DNA synthesis.  相似文献   

13.
Infectious deoxyribonucleic acid (DNA) was extracted from green monkey kidney (CV-1) cultures at various times after the cultures were infected with simian virus 40 (SV40) at input multiplicities of 0.01 and 0.1 plaque-forming unit (PFU) per cell. A pronounced decrease in infectious DNA was observed from 3 to 16 hr after virus infection, suggesting that structurally altered intracellular forms may have been generated early in infection. Evidence is also presented that SV40 DNA synthesis requires concurrent protein synthesis. DNA replication was studied in the presence and absence of cycloheximide in: (i) SV40-infected and uninfected cultures of CV-1 cells; (ii) cultures synchronized with 1-β-d-arabinofuranosylcytosine (ara-C) for 24 to 30 hr prior to the addition of cycloheximide; and (iii) in heterokaryons of SV40-transformed hamster and susceptible monkey kidney cells. DNA synthesis was determined by pulse-labeling the cultures with 3H-thymidine at various times from 24 to 46 hr after infection. In addition, the total infectious SV40 DNA was measured. Addition of cycloheximide, even after early proteins had been induced, grossly inhibited both SV40 and cellular DNA syntheses. The activities of thymidine kinase, DNA polymerase, deoxycytidylate deaminase, and thymidylate kinase were measured; these enzyme activities remained high for at least 9 hr in the presence of cycloheximide. SV40 DNA prelabeled with 3H-thymidine before the addition of cycloheximide was also relatively stable during the time required for cycloheximide to inhibit further DNA replication.  相似文献   

14.
Kilham rat virus (KRV) is adsorbed into the rat nephroma cell within 1 hr after infection. There follows a latent period of about 12 hr during which less than 1% of the input infectious virus can be accounted for. New infectious virions can be detected at about 12 hr and the maximal yield of virus is attained by 23 hr after infection. The increase in final virus yield is about 200-fold over that found in the latent period. During this 23-hr period of virus growth, the rate of protein synthesis remains 75 to 100% of that in the uninfected cell. Ribonucleic acid (RNA) synthesis during this period is maintained at 100 to 150% of that found in the control cells. The addition of the inhibitor of deoxyribonucleic acid (DNA) synthesis, 5-fluoro-deoxyuridine (FUDR), up to 8 hr after infection completely suppresses virus production. After 8 hr, viral DNA production has started and FUDR inhibition progressively decreases until by 23 hr the addition of the inhibitor no longer causes a reduced virus yield. Viral DNA synthesis once initiated is required for the remainder of the 23-hr virus cycle. Viral DNA synthesis probably begins about 4 hr before the production of infectious virions. In the KRV-infected cells, DNA synthesis decreased sharply for 6 to 7 hr after infection in comparison to the uninfected cell. At 7 to 8 hr after infection, DNA synthesis in the infected cell increased and was maintained at a higher level than in the control cells for the rest of the virus growth period.  相似文献   

15.
16.
Cultured Burkitt cells were examined by immunofluorescence, autoradiography, and electron microscopy in an effort to identify the stainable cells with those harboring herpes-type virus particles. Immediately after a 2-hr pulse of (3)H-thymidine, from 30 to 60% of the cells revealed heavy nuclear labeling. In most cases the grains were evenly dispersed, but in about 3 to 5% the grains showed a focal distribution and occasionally they extended into the cytoplasm. Such nuclear foci were rarely seen at 8 hr after the pulse. When the analysis was restricted to preselected immunofluorescent cells, up to 80% showed label at 8 hr and cytoplasmic grains were prominent. To reduce cellular deoxyribonucleic acid (DNA) synthesis, cells were X-irradiated with 3,000 to 6,000 R, and the isotope pulse was applied 1, 4, or 7 days later. Whereas the total number of labeled cells decreased in roughly twofold steps at the respective intervals (from 40 to 10%), the incorporation of (3)H-thymidine into fluorescent cells was not affected by X irradiation. In each series, about 70% of the fluorescent cells contained label when they were examined at 24 and 48 hr after the pulse, whereas at 8 and 72 hr fewer were positive. At the earlier intervals, unlabeled fluorescent cells most likely represented cells which had completed viral DNA synthesis prior to the pulse; at the later intervals, unlabeled fluorescent cells were probably cells which commenced viral replication after the pulse. These data support the conclusion that the immunofluorescent cells are the ones which harbor virus, and also confirm the expectation that the virus is a DNA virus from a member of the herpes group. This conclusion was firmly established by sectioning and electron microscopic examination of individual fluorescent cells, all of which contained numerous virus particles, whereas the nonstained cells prepared in a similar manner were free of them.  相似文献   

17.
18.
The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell.  相似文献   

19.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

20.
Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号