首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Summary Several species of mormyrid electric fish have a sex difference in the pulse waveform of their electric organ discharge (EOD). Field studies in Gabon, West Africa have shown for one such species,Brienomyrus brachyistius (triphasic), that the sexually mature male EOD differs in shape and is nearly twice the duration of the EODs of females and juveniles. Fourier analysis reveals that differences in EOD duration correlate with those in the EOD power spectrum which has a peak at 0.3 kHz in males and 1.3 kHz in females and juveniles. We find a corresponding sex difference in the frequency tuning of at least one class of electroreceptors known as Knollenorgans. The average best or characteristic frequency of Knollenorgans is lower in males compared to females and juveniles. This correlates with a lower peak in the power spectrum of the male's pulse. When females are treated with gonadal androgens, their EODs increase 2–3 fold in duration, and the power spectra of their pulses are correspondingly lowered to match that of mature males. The average best frequency of Knollenorgans decreases by nearly 1 kHz which matches the downward shift of their EOD's power spectrum.For a second species ofBrienomyrus (sp. 2) which is commercially imported from Nigeria, we have not detected a sex difference in the power spectrum or duration of the EOD. The power spectrum peaks at about 4.2 kHz in males, females, and juveniles. Androgens, however, do cause a coincident downward shift in the average peak of the EOD power spectrum (from 4.2 to 1.3 kHz) and the average best frequency of Knollenorgans (from 2.3 to 1.4 kHz).Specimens ofBrienomyrus (sp. 2) that have been electrically silenced by surgical means are tuned, on the average, only 0.2 kHz higher than control animals. Silenced animals that have been treated with androgens are tuned, on the average, 0.2 kHz below controls. The results suggest that electroreceptor tuning is only partially modifiable during androgen treatment if the electroreceptors arenot being stimulated by an external electrical stimulus, i.e. the animal's own EOD. Since androgen treatment has a dramatic effect on receptor tuningonly in intact fish, it seems likely that retuning isnot due to a direct action of androgens on receptors, but rather due to the action of the principal electrical stimulus upon the receptors, i.e. the EOD. The implications of such results for the development of species and sex differences in electro-receptor tuning is discussed.  相似文献   

2.
1. Hypopomus occidentalis, a weakly electric gymnotiform fish with a pulse-type discharge, has a sexually dimorphic electric organ discharge (Hagedorn 1983). The electric organ discharges (EODs) of males in the breeding season are longer in duration and have a lower peak-power frequency than the EODs of females. We tested reproductively mature fish in the field by presenting electronically generated stimuli in which the only cue for sex recognition was the waveshape of individual EOD-like pulses in a train. We found that gravid females could readily discriminate male-like from female-like EOD waveshapes, and we conclude that this feature of the electric signal is sufficient for sex recognition. 2. To understand the possible neural bases for discrimination of male and female EODs by H . occidentalis, we conducted a neurophysiological examination of both peripheral and central neurons. Our studies show that there are sets of neurons in this species which can discriminate male or female EODs by coding either temporal or spectral features of the EOD. 3. Temporal encoding of stimulus duration was observed in evoked field potential recordings from the magnocellular nucleus of the midbrain torus semicircularis. This nucleus indirectly receives pulse marker electroreceptor information. The field potentials suggest that comparison is possible between pulse marker activity on opposite sides of the body. 4. From standard frequency-threshold curves, spectral encoding of stimulus peak-power frequency was measured in burst duration coder electroreceptor afferents. In both male and female fish, the best frequencies of the narrow-band population of electroreceptors were lower than the peak-power frequency of the EOD. Based on this observation, and the presence of a population of wide-band receptors which can serve as a frequency-independent amplitude reference, a slope-detection model of frequency discrimination is advanced. 5. Spectral discrimination of EOD peak-power frequency was also shown to be possible in a more natural situation similar to that present during behavioral discrimination. As the fish's EOD mimic slowly scanned through and temporally coincided with the neighbor's EOD mimic, peak spike rate in burst duration coder afferents was measured. Spike rate at the moment of coincidence changed predictably as a function of the neighbor's EOD peak-power frequency. 6. Single-unit threshold measurements were made on afferents from peripheral burst duration coder receptors in the amplitude-coding pathway, and midbrain giant cells in the time-coding pathway.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Advances, since 1974, in understanding the physiology of electroreceptors are reviewed. In brief: 1. In fish that produce a weak electric discharge with electric organs, the tuberous electroreceptors are generally most sensitive to stimulus frequencies near the species', individual's, and even local, waveform of the electric organ discharge; there is a good match between receptor sensitivity and the normal stimulus. 2. The ability of tuberous electroreceptors to detect field distortions produced by reasonably sized objects is limited; an object must be closer than a body-length to be detected, and the afferent response is a negative power function of object distance. 3. The second major electroreceptor class, the ampullary electroreceptors, is sensitive to low frequency, low intensity electric fields, and this acute sensitivity results in the ability of the receptors in marine species to detect magnetic fields on the order of the Earth's. 4. The calcium ion is essential for normal functioning of ampullary electroreceptors.  相似文献   

4.
Summary Hypopomus occidentalis is a weakly electric Gymnotiform fish with a pulse-type electric organ discharge (EOD).Hypopomus used in this study were taken from one of the northernmost boundaries of this species, the Atlantic drainage of Panama where the animals breed at the beginning of the dry season (December). In normal breeding populations,Hypopomus occidentalis exhibit a sexual dimorphism in EOD and morphology. Mature males are large with a broad tail and have an EOD characterized by a low peak power frequency. Females and immature males are smaller, having a slender tail and EODs with higher peak power frequencies (Fig. 1). This study describes differences in the EOD and electric organ morphology between breeding field populations of male and femaleHypopomus. Changes in physiology, morphology and EOD shape which may accompany this seasonal change were examined in steroid injected fish, using standard histological and physiological techniques.A group of females were injected with hormones (5-dihydrotestosterone (DHT), estrogen or saline) to assess changes in their morphology and EOD. Animals treated with DHT developed characteristics which mimicked the sexually dimorphic characteristics of a male, while the other groups did not (see Fig. 5). Tissue from the tails of breeding males and females, and females treated with DHT, were sampled to measure the size of the electrocytes in the tail. The broader tail of males and DHT-females is composed of large electrocytes, whereas the slender tail of normal females is composed of smaller electrocytes. Therefore, the increase in the tail width in the female DHT group is caused by an enlargement of the electrocytes in this area.Intracellular recordings from the electrocytes of saline and DHT injected females show a difference in the responses of the rostral faces of the electrocytes from the two groups, which reflect the differences in their EODs. Saline-treated animals had symmetrical EODs (the first and second phase of the EOD were equal in duration and amplitude), while the physiological responses from each face of the electrocytes yielded responses that were similarly equal in duration and amplitude. DHT-treated animals had asymmetrical EODs (the first phase of the EOD was similar to that of saline treated fish and larger in amplitude and shorter in duration than the second phase) and the physiological responses of the electrocytes reflected this asymmetry. The differential recordings across the caudal face were similar to those from saline treated fish, while the responses from the rostral face were longer in duration and smaller in amplitude.These data suggest that the effects of androgens underlie the changes in single electrocytes which produce the sexually dimorphic signals and morphology present in natural breeding populations ofHypopomus occidentalis.  相似文献   

5.
Summary Plasticity in the frequency of the electric organ discharge (EOD) and electroreceptor tuning of weakly electric fish was studied in the genusApteronotus. Both hormone-induced and maturational changes in EOD frequency and electroreceptor tuning were examined.Apteronotus is different from all other steroid-responsive weakly electric fish in that estradiol-17, rather than androgens, induces discharge frequency decreases. This result can account for the reversed discharge frequency dimorphism found inApteronotus in which, counter to all other known sexually dimorphic electric fish, females have lower discharge frequencies than males. Studies of electroreceptor tuning inApteronotus indicate that electroreceptors are closely tuned to the frequency of the EOD. This finding was noted not only in adult animals, but also in juvenile animals shortly after the onset of their EODs. Tuning plasticity inApteronotus, as in other species studied, is associated with altered EOD frequencies and was noted in both maturational EOD changes and in estrogen-induced changes. Thus, tuning plasticity appears to be a general phenomenon which occurs concurrent with a variety of EOD changes.  相似文献   

6.
Synopsis The electric organ discharge (EOD) of the little skate,Raja erinacea and winter skate,R. ocellata was recorded both from isolated individuals and from small groups using methods that allowed for the identification of individuals producing EODs. Pulse duration, train lengh, frequency, and pulse patterns are characterized and correlated with behaviour. The two species,R. erinacea andR. ocellata, were found to have characteristically different EOD pulse durations of 70 ms and 217 ms respectively. Isolated skates rarely discharged whereas groups of skates were found to discharge regularly. The EOD was evoked by tactile prodding, physical contact with other skates and electrical stimulation. Skates also discharged reflexively in response to an artificially induced head-positive DC stimulus, sine wave and monopolar square pulses. During approach and contact, skates responded to each other with interacting EOD displays. EOD interaction and pulse duration differences between other species suggest a possible intra-specific communication function of the EOD inRaja.  相似文献   

7.
Summary Field studies have demonstrated that several species of mormyrid fish from Gabon, West Africa have a sex difference in the pulse-like waveform of their Electric Organ Discharge (EOD). Administration of androgen hormones (testosterone or dihydrotestosterone) to a female or juvenile can induce the EOD typical of a sexually mature male. Data for two such species —Brienomyrus brachyistius (triphasic) andStomatorhinus corneti — are presented, showing that transformation of a female's or juvenile's EOD to a male-like EOD involves a 2–3 fold increase in EOD duration and a downward shift in the peak frequency of the EOD's power spectrum (as determined by Fourier analysis). ForBrienomyrus brachyistius (triphasic), estradiol can also induce changes in the EOD waveform, although not as dramatic as that for androgens. Changes in EOD duration and power spectra are often accompanied by an alteration of the wave-shape or morphology of the EOD pulse, i.e., the relative amplitude of its peaks and the presence of inflection points in its negative and positive phases.A third species,Hippopotamyrus batesii (triphasic), not previously known to have an EOD sex difference, also responds to testosterone treatment with an increase in EOD duration. Preliminary field data indicate this species may have a sexual dimorphism in its EOD, suggesting that the response to a steroid hormone may be an indicator of a sex difference in a species' EOD waveform. Such findings are discussed in relation to the affects of steroids on vertebrate neurons and muscle, and the evolution of electric communication systems.Abbreviations DHT 5-dihydrotestosterone - EOD electric organ discharge - F mature female - HTI interval between peaks (H and T) in EOD's first derivative - IF juvenile female - IM juvenile male - M mature male - PPW peak frequency of power spectrum  相似文献   

8.
Summary The prepacemaker nucleus (PPN) in the midbrain of the gymnotiform electric fishEigenmannia provides the only known neuronal input to the medullary pacemaker nucleus, which triggers each electric organ discharge (EOD) cycle by a single command pulse. Electrical stimulation of the PPN elicited two distinct forms of modulations in the pacemaker activity, brief accelerations, hence referred to as chirps, and gradual frequency shifts with a time constant of approximately one second. The associated EOD modulations were indistinguishable from natural communication signals. Depending upon the site of stimulation, the two forms of modulation could be elicited alone or superimposed (Fig. 1). Stimulation sites eliciting only chirps could be separated from sites eliciting only gradual shifts by as little as 60 m. The magnitude of the elicited chirps depended upon the timing of the pulse stimulus with reference to the phase of the pacemaker cycle (Figs. 2, 3).Extracellular and intracellular recordings of single PPN neurons revealed that an action potential from a single neuron generates a chirp, and that the magnitude of the chirp depends upon the timing of the action potential with reference to the phase of the pacemaker cycle (Figs. 4, 5). The spike activity of these neurons had no relation to the jamming avoidance response (JAR), suggesting independent neuronal mechanisms for chirps and the JAR. Depolarization of such neurons by current injection produced bursts of chirps (Fig. 6), and intracellular injection of Lucifer Yellow identified these cells as a large type of PPN neuron which could also be retrogradely labeled from the pacemaker with horseradish peroxidase (HRP) (Fig. 7). We were unable to record from neurons linked to gradual shifts of the pacemaker frequency, although the JAR was elicited continually during the experiments. A smaller cell type of the PPN which can be retrogradely labeled with HRP but so far could not be recorded may control gradual frequency shifts.Abbreviations PPN prepacemaker nucleus - JAR jamming avoidance response - EOD electric organ discharge - Df neighbor's EOD frequency (or its mimic) minus animal's own EOD frequency (or its mimic)  相似文献   

9.
The novelty response of weakly electric mormyrids is a transient acceleration of the rate of electric organ discharges (EOD) elicited by a change in stimulus input. In this study, we used it as a tool to test whether Gnathonemus petersii can perceive minute waveform distortions of its EOD that are caused by capacitive objects, as would occur during electrolocation. Four predictions of a hypothesis concerning the mechanism of capacitance detection were tested and confirmed: (1) G. petersii exhibited a strong novelty response to computer-generated (synthetic) electric stimuli that mimic both the waveform and frequency shifts of the EOD caused by natural capacitive objects (Fig. 3). (2) Similar responses were elicited by synthetic stimuli in which only the waveform distortion due to phase shifting the EOD frequency components was present (Fig. 4). (3) Novelty responses could reliably be evoked by a constant amplitude phase shifted EOD that effects the entire body of the fish evenly, i.e., a phase difference across the body surface was lacking (Figs. 3, 4). (4) Local presentation of a phase-shifted EOD mimic that stimulated only a small number of electroreceptor organs at a single location was also effective in eliciting a behavioral response (Fig. 5).Our results indicate that waveform distortions due to phase shifts alone, i.e. independent of amplitude or frequency cues, are sufficient for the detection of capacitive, animate objects. Mormyrids perceive even minute waveform changes of their own EODs by centrally comparing the input of the two types of receptor cells within a single mormyromast electroreceptor organ. Thus, no comparison of differentially affected body regions is necessary. This shows that G. petersii indeed uses a unique mechanism for signal analysis, which is different from the one employed by gymnotiform wavefish.Abbreviations EOD electric organ discharge - p-p-amplitude peak-to-peak amplitude  相似文献   

10.
Summary In the context of aggression and courtship, Eigenmannia repeatedly interrupts its electric organ discharges (EODs) These interruptions (Fig. 1) contain low-frequency components as well as high-frequency transients and, therefore, stimulate ampullary and tuberous electroreceptors, respectively (Figs. 2, 3). Information provided by these two classes of receptors is relayed along separate pathways, via the electrosensory lateral line lobe (ELL) of the hindbrain, to the dorsal torus semicircularis (TSd) of the midbrain. Some neurons of the torus receive inputs from both types of receptors (Figs. 14, 15), and some respond predominantly to EOD interruptions while being rather insensitive to other forms of signal modulations (Figs. 12, 13). This high selectivity appears to result from convergence and gating of inputs from individually less selective neurons.Abbreviations CP central posterior thalamic nucleus - Df frequency difference between neighbor's EOD and fish's own - DPn dorsal posterior nucleus (thalamus) - EOD electric organ discharge - ELL electrosensory lateral line lobe - JAR jamming avoidance response - LMR lateral mesencephalic reticular formation - nE nucleus electrosensorius - nEb nucleus electrosensorius, beat-related area - nE nucleus electrosensorius, area causing rise of EOD frequency - nE nucleus electrosensorius, area causing fall of EOD frequency - nEar nucleus electrosensorius-acusticolateralis area - NPd nucleus praeeminentialis, pars dorsalis - PPn prepacemaker nucleus - PT pretectal nucleus - SE nucleus subelectrosensorius - TeO optic tectum - TSd dorsal (electrosensory) torus semicircularis - TSv ventral (mechano-sensory and auditory) torus semicircularis  相似文献   

11.
The electric organ discharge (EOD) of the South American knifefish Eigenmannia sp. is a permanently present wave signal of usually constant amplitude and frequency (similar to a sine wave). A fish perceives discharges of other fish as a modulation of its own. At frequency identity (F = 0 Hz) the phase difference between a fish's own electric discharge and that of another fish affects the superimposed waveform. It was unclear whether or not the electrosensory stimulus-intensity threshold as behaviourally determined depends on the phase difference between a fish's own EOD and a sine-wave stimulus (at F = 0 Hz). Also the strength of the jamming avoidance response (JAR), a discharge frequency shift away from a stimulus that is sufficiently close to the EOD frequency, as a function of phase difference was studied. Sine-wave stimuli were both frequency-clamped and phase-locked to a fish's discharge frequency (F = 0 Hz). In food-rewarded fish, the electrosensory stimulus-intensity threshold depended significantly on the phase difference between a fish's discharge and the stimulus. Stimulus-intensity thresholds were low (down to 3 V/cm, peak-to-peak) when the superimposed complex wave changed such that the shift in zero-crossings times relative to the original EOD was large but amplitude change minimal; stimulus-intensity thresholds were high (up to 16.9 V/cm, peak-to-peak) when the shift in zero-crossings times was small but amplitude change maximal. Similar results were obtained for the non-conditioned JAR: at constant supra-threshold stimulus intensities and F = 0 Hz, the phase difference significantly affected the strength of the JAR, although variability between individuals was higher than that observed in the conditioned experiments.Abbreviations ACP active phase coupling - EOD electric organ discharge - JAR jamming avoidance response - F frequency (fish) — frequency (stimulus) [Hz] - p-p peak-to-peak  相似文献   

12.
1.  A prominent population of olfactory receptor cells from the lobsterHomarus americanus is narrowly tuned to trans-4-hydroxyl-L-proline (Hyp, Fig. 1) suggesting that Hyp may be an important chemical signal for this animal (Johnson and Atema 1983). However, Hyp is usually bound in connective tissue proteins of lobster prey and thus may be unavailable in sufficient quantities as a free amino acid to stimulate chemoreceptors. To determine other possible adequate stimuli for Hyp sensitive cells we further examined their tuning using a variety of substances including other amino acids also found in collagens, Hyp isomers (Fig. 1), synaptic receptor agonists, ecdysones, purified natural collagens and their gelatins (Fig. 2), and different molecular weight fractions of a commercial gelatin solution (Table 1).
2.  Of a first group of Hyp sensitive cells (N=29) tested with the compounds in Table 1 A, 21 responded best to Hyp. Only a commercial gelatin solution (SG1) and its one-tenth dilution consistently elicited responses from these cells (Fig. 3). The remaining 8 cells responded best to the SG1 solutions (5 cells) or to one of the other test substances (Table 2).
3.  Of a second group of Hyp sensitive cells (N=27) tested with the collagen and gelatin solutions (Table 1b), 19 responded best to Hyp. Again, the Hyp best cells rarely responded to any test substance other than Hyp and a commercial gelatin solution, SG2, and its greater than 12 kD fraction, SG2-12 (Fig. 4). SG2 and SG2-12 were equally effective for the Hyp best cells. The remaining 8 cells responded best to either SG2 (2 cells), SG2-12 (2 cells) or one of the purified gelatin or collagen solutions (Table 3).
4.  A third group of Hyp sensitive cells (N=21) was tested with SG2, SG2-12, and a greater than 1 kD fraction of SG2 (SG2-1; Table 1c). Based on the mean response, the most effective stimulus for these cells was SG2-12, followed by SG2-1, SG2 and Hyp. The high mean response for the SG2 solutions was mainly due to a few cells giving large responses to these stimuli (Fig. 6). Ten of these 21 cells responded best to Hyp; all but 2 responded to one or more of the SG2 solutions; the other 11 cells responded best to either SG2, SG2-12 or SG2-1, which were all best stimuli for different cells (Fig. 5).
5.  Overall, the 77 Hyp sensitive cells tested here can be divided into two main types; 65% Hyp best cells and 31% gelatin best cells. The Hyp best cells seem to be a distinct population of receptors: they have no spontaneous activity and give low responses (15 spikes in 5 s) even to their best stimulus, Hyp. In contrast, the gelatin best cells are not infrequently spontaneously active and can give high responses to their best stimulus (up to 150 spikes in 5 s). In addition, when tested specifically in the third group, the Hyp cells appear to have a tuning spectrum distinct from the gelatin best cells (Fig. 7).
6.  Stimulation of Hyp cells by gelatin solutions may be due to Hyp-containing peptides derived from the gelatin. Enzymatic tissue breakdown from the lobster's prey could produce chemical mixtures that stimulate prominent receptor populations which respond to both high (gelatin best cells) and low (Hyp best cells) molecular weight substances. This could create a central representation of food based on parallel receptor lines of somewhat overlapping sensitivity. Together, Hyp best and gelatin best receptor cell populations may give important information on the presence and state of decay of the lobster's food.
Abbreviations: see Table 1  相似文献   

13.
According to current phylogenetic theory, both electroreceptors and electric organs evolved multiple times throughout the evolution of teleosts. Two basic types of electroreceptors have been described: ampullary and tuberous electroreceptors. Ampullary‐type electroreceptors appeared once in the common ancestor of the Siluriformes+Gymnotiformes (within the superorder Ostariophysi), and on two other occasions within the superorder Osteoglossomorpha: in the African Mormyriformes and in the African Notopteriformes. Tuberous receptors are assumed to have evolved three times; all within groups that already possessed ampullary receptors. With the exception of a single catfish species, for which studies are still lacking, all fish with tuberous electroreceptors also have an electric organ. Tuberous electroreceptors are found in the two unrelated electrogenic teleost lineages (orders Gymnotiformes and Mormyriformes) and in one non‐electrogenic South American catfish species (order Siluriformes). Electric organs evolved eight times independently among teleosts: five of them among the ostariophysans (once in the gymnotiform ancestor and in four siluriform lineages), once in the common ancestor of Mormyriformes, and in two uranoscopids. With the exception of two uranoscopid genera, for which no electroreceptive capabilities have been discovered so far, all electric organs evolved as an extension of a pre‐existing electroreceptive (ampullary) condition. It is suggested that plesiomorphic electric organ discharges (EODs) possessed a frequency spectrum that fully transgressed the tuning curve of ampullary receptors, i.e. a signal such as a long lasting monophasic pulse. Complex EOD waveforms appeared as a derived condition among electric fish. EODs are under constant evolutionary pressure to develop an ideal compromise between a function that enhances electrolocation and electrocommunication capabilities, and thereby ensures species identity through sexual and behavioural segregation, and minimizes the risk of predation.  相似文献   

14.
The weakly electric fish, Apteronotus leptorhynchus, produces a wave-like electric organ discharge (EOD) utilized for electrolocation and communication. Both sexes communicate by emitting chirps: transient increases in EOD frequency. In males, chirping behavior and the jamming avoidance response (JAR) can be evoked by an artificial EOD stimulus delivered to the water at frequencies 1–10 Hz below the animal's own EOD. In contrast, females rarely chirp in response to this stimulus even though they show consistent JARs. To investigate whether this behavioral difference is hormone dependent, we implanted females with testosterone (T) and monitored their chirping activity over a 5 week period. Our findings indicate that elevations in blood levels of T cause an enhancement of chirping behavior and a lowering of basal EOD frequency in females. Elevated blood levels of T also appear to modulate the quality of chirps produced by hormone treated females. The effects of T on female chirping behavior and basal EOD frequency appear specific, since the magnitude of the JAR was not affected by the hormonal treatment. These findings suggest that seasonal changes in circulating concentrations of T may regulate behavioral changes in female chirping behavior and basal EOD frequency.Abbreviations DHT dihydrotestosterone - E estradiol - EOD elecdric organ discharge - GSI gonadal size index - JAR jamming avoidance response - PPn prepacemaker nucleus - T testosterone  相似文献   

15.
Evidence for a direct effect of androgens upon electroreceptor tuning   总被引:2,自引:0,他引:2  
Tuberous electroreceptors of individual wave type weakly electric fish are tuned to the fundamental frequency of that fish's electric organ discharge (EOD). EOD frequency and receptor best frequency (BF) are both lowered following systemic injection of 5-alpha-dihydrotestosterone (DHT). A previous study (Meyer et al. 1984) showed that the effect of DHT on the EOD generating circuitry was independent of an ongoing EOD and suggested that its effect on electroreceptor tuning was indirect, possibly mediated by the electric field. We have continued these studies to determine the factors which influence electroreceptor tuning. Baseline recordings of EOD frequency, receptor oscillations, and single afferent tuning curves were taken. After fish were electrically silenced by spinal cord transection they were injected daily with either DHT or saline or were implanted with either DHT-filled or empty silastic capsules. As previously reported, the EOD frequency (determined from pacemaker nucleus recordings) was lowered in DHT-treated, transected fish and increased in control fish. Similarly, receptor tuning was lowered in the DHT-treated, silenced fish. Oscillation frequencies decreased in both treated and control groups, but significantly more in the hormone group. Single afferent best frequencies were lowered in both DHT groups and raised in their respective control groups. In another series of experiments exogenous electric fields capable of driving receptors in a 1-to-1 phase-locked manner were placed around silenced fish. We were unable to elicit any shift in pacemaker frequency or electroreceptor tuning regardless of stimulus field geometry. Four transected fish were injected with DHT and placed in exogenous electric fields of higher frequency than their original EOD. Even in the presence of a higher frequency electric field, DHT lowered EOD frequency and afferent BF. We conclude that androgens produce effects both on the EOD generating circuitry, probably at the level of the pacemaker nucleus, and on electroreceptors, probably, ultimately, on receptor cell membrane conductances. These effects occur in parallel allowing the two parameters to remain well matched. In contrast to former predictions, exogenous electric fields alone appear unable to shift receptor tuning.  相似文献   

16.
Auditory receptors of the locust (Locusta migratoria) were investigated with respect to the directionality cues which are present in their spiking responses, with special emphasis on how directional cues are influenced by the rise time of sound signals. Intensity differences between the ears influence two possible cues in the receptor responses, spike count and response latency. Variation in rise time of sound pulses had little effect on the overall spike count; however, it had a substantial effect on the temporal distribution of the receptor's spiking response, especially on the latencies of first spikes. In particular, with ramplike stimuli the slope of the latency vs. intensity curves was steeper as compared to stimuli with steep onsets (Fig. 3). Stimuli with flat ramplike onsets lead to an increase of the latency differences of discharges between left and right tympanic receptors. This type of ramplike stimulus could thus facilitate directional hearing. This hypothesis was corroborated by a Monte Carlo simulation in which the probability of incorrect directional decisions was determined on the basis of the receptor latencies and spike counts. Slowly rising ramps significantly improved the decisions based on response latency, as compared to stimuli with sudden onsets (Fig. 4). These results are compared to behavioural results obtained with the grasshopper Ch. biguttulus. The stridulation signals of the females of this species consist of ramplike pulses, which could be an adaptation to facilitate directional hearing of phonotactically approaching males.Abbreviations HFR high frequency receptor - ILD interaural level difference - LFR low frequency receptor - SPL sound pressure level - WN white noise  相似文献   

17.
This paper examines the directionality of tuberous electroreceptor responses and relates them to a polarity bias seen for passive electrolocation by electric fish (Hypopomus). We recorded from Burst Duration Coders (BDCs) while stimulating with 1 kHz single period sine waves with electric fields oriented horizontally in different directions. Electroreceptors have figure-8 directional sensitivity profiles with two, usually unequal lobes of sensitivity separated by 180°. For most units the larger lobe points inward, while for a few, the lobes are symmetrical or the larger lobe points outward. The differences correlate with differences in frequency tuning of the receptors. We can alter, and even reverse, the directional asymmetry of a single unit by changing the frequency of the stimulus. Two general response profiles result, with two corresponding classes of tuning curves. The degree of asymmetry varies with position on the body surface. The asymmetries and the effects of stimulus frequency and of tuning can be modeled with a linear/non-linear/linear cascade filter. The behavioral preference for approaching the head end ( + ) of an electrode is difficult to understand in light of the asymmetry of responses we report for amplitude-coding BDCs but can be understood by reference to the time-coding Pulse Marker (PM) receptors.Abbreviations BDC Burst Duration Coder - EOD electric organ discharge - nALL anterior lateral line nerve - PM Pulse Marker  相似文献   

18.
Summary We show the variations in the spike activity of both auditory receptors inSpodoptera frugiperda, Mocis latipes, Ascalapha odorata (Noctuidae),Maenas jussiae andEmpyreuma pugione (Arctiidae) immediately after 45 ms and 5 s acoustic stimuli at different intensities. The frequency of the applied stimuli was 34 kHz forE. pugione and 20 kHz for the other species. The electrical activity of the auditory receptors was recorded at the tympanic nerve with a stainless steel hook electrode. When the 45 ms pulses cease there is an afterdischarge from both auditory receptors in all the species. The number of spikes in the afterdischarge activity of both receptor cells (A1 and A2) shows a linear relation with stimulus intensity (Table 1). This number increases monotonically with increments in stimulus intensity, except for the A1 cell activity inE. pugione, which decreases at intensities higher than 55 dB (Fig. 1). There are significant species-specific differences in the slope values of the number of spikes in the afterdischarge of both auditory receptors. After a 5 s stimulusM. latipes andM. jussiae show a rapid recovery of the standard spontaneous A1-cell discharge level. Poststimulus A1-cell spike activity inS. frugiperda shows a silent period, the duration of which increases with stimulus intensity (Fig. 3).E. pugione andA. odorata show such a silent period after low and moderately intense stimuli, but at high intensities the post-stimulus activity exceeds the pre-stimulus spontaneous discharge (Fig. 3). We demonstrate statistically that these variations cannot be explained by the random fluctuations of the standard spontaneous discharge. They are thus considered a silent and a rebound period respectively (Fig. 5). The presence and duration of either type of period seem to depend on the magnitude of the response to the acoustic stimulus. They thus seem related to the adaptation rate and the previously suggested existence of peripheral inhibitory interaction between the auditory receptors.  相似文献   

19.
Temporal coding in the moth ear was inferred from the response of the auditory receptor to acoustic stimuli with different temporal characteristics.
1.  Determinations of the threshold with different stimulus pulse durations showed that the moth ear behaves as an energy detector with a maximum time constant (the integration time) of 25 ms. Pulse durations beyond this value did not result in decreased thresholds (Fig. 1).
2.  The synchronization to amplitude modulations was determined by stimulating the moth ear with amplitude modulated (AM) tones (carrier frequency: 40 kHz) and AM white noise presented as 450 ms pulses separated by pauses of similar length. The modulation depth was constant (100%) whereas the modulation frequency,f m, was varied. The maximumf m which the auditory receptors could follow was 200 Hz (P<0.05) (figs.=" 2,=" 3,=" 4).=">
3.  The relatively broad tuning of the only receptor which was functional at the relevant stimulus intensities suggested that AM detection could only be based on temporal cues. This was confirmed by the results showing the same degree of synchronization independent of carrier.
4.  A minimum time constant for the receptor was also determined by interrupting a 400 ms noise pulse by a gap (Figs. 5, 6). The threshold for gap detection of the moth ear was ca. 2 ms on a 2.5% significance level (one sided test).
5.  The temporal acuity reported here seems to be fine enough to explain the temporal resolution suggested by behavioral results from other insect species. The results are discussed in relation to acoustic communication in insects as well as in relation to temporal resolution in vertebrates.
  相似文献   

20.
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic–electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号