首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two bacterial strains capable of degrading polycyclic aromatic hydrocarbons were isolated from the crude oil exploration bore well sludge and identified by 16s rRNA gene sequencing as Pseudomonas stutzeri and Bacillus subtilis. The bacterial strains Pseudomonas stutzeri and Bacillus subtilis were able to degrade 95.1% and 99.4% of naphthalene (100 mg L?1) and 99.5% and 94.6% of anthracene (50 mg L?1), respectively, as a sole carbon and energy source in the liquid phase within a period of 6 days. The specific growth rate was determined for both the species and found to be 0.169 and 0.124 day?1.  相似文献   

2.
The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.  相似文献   

3.
Pseudomonas nitroreducens MILB-8054A isolated from petroleum-contaminated soil, immobilized on calcium alginate beads, and under resting cell condition, produced biosurfactants. Immobilized cells gave a best yield of 5.6 g rhamnolipid l?1 using sucrose as carbon source. Time course study using resting cells showed that 2 % v/v of palm oil (preculture carbon source) and 10 % diesel (carbon source) gave the best rhamnolipid yield of 5.1 g l?1 at pH 8 and temperature of 30 °C. Carbon utilization by resting cells was compared with that of growing cells. The best biosurfactant recovery procedure was acetone extraction.  相似文献   

4.
The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6–7.4 mg L?1 day?1 of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L?1 day?1 of CP (100 mg L?1). Addition of glucose as an additional C source increased the degradation capacity by 8–14 %. After inoculation of contaminated soil with CP (200 mg kg?1) disappearance rates were 3.83–4.30 mg kg?1 day?1 for individual strains and 4.76 mg kg?1 day?1 for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.  相似文献   

5.
6.

Background

Lignin is a recalcitrant aromatic polymer that is a potential feedstock for renewable fuel and chemical production. Rhodococcus opacus PD630 is a promising strain for the biological upgrading of lignin due to its ability to tolerate and utilize lignin-derived aromatic compounds. To enhance its aromatic tolerance, we recently applied adaptive evolution using phenol as a sole carbon source and characterized a phenol-adapted R. opacus strain (evol40) and the wild-type (WT) strain by whole genome and RNA sequencing. While this effort increased our understanding of the aromatic tolerance, the tolerance mechanisms were not completely elucidated.

Results

We hypothesize that the composition of lipids plays an important role in phenol tolerance. To test this hypothesis, we applied high-resolution mass spectrometry analysis to lipid samples obtained from the WT and evol40 strains grown in 1 g/L glucose (glucose), 0.75 g/L phenol (low phenol), or 1.5 g/L phenol (high phenol, evol40 only) as a sole carbon source. This analysis identified?>?100 lipid species of mycolic acids, phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and triacylglycerols. In both strains, mycolic acids had fewer double bond numbers in phenol conditions than the glucose condition, and evol40 had significantly shorter mycolic acid chain lengths than the WT strain in phenol conditions. These results indicate that phenol adaptation affected mycolic acid membrane composition. In addition, the percentage of unsaturated phospholipids decreased for both strains in phenol conditions compared to the glucose condition. Moreover, the PI content increased for both strains in the low phenol condition compared to the glucose condition, and the PI content increased further for evol40 in the high phenol condition relative to the low phenol condition.

Conclusions

This work represents the first comprehensive lipidomic study on the membrane of R. opacus grown using phenol as a sole carbon source. Our results suggest that the alteration of the mycolic acid and phospholipid membrane composition may be a strategy of R. opacus for phenol tolerance.
  相似文献   

7.
The present study shows the feasibility of a newly isolated strain Acinetobacter sp. B9 for concurrent removal of phenol and Cr (VI) from wastewater. The experiments were conducted in a batch reactor under aerobic conditions. Initially, when mineral salt solution was used as the culture medium, the strain was found to utilize phenol as sole carbon and energy source while no Cr (VI) removal was observed. However, the addition of glucose as co-carbon source resulted in the removal of both toxicants. This co-removal efficiency of the strain was further improved with nutrient-rich media (NB). Optimum co-removal was determined at 188 mg L?1 of phenol and 3.5 mg L?1 of Cr (VI) concentrations at pH 7.0. Strain B9 followed the orthometabolic pathway for phenol degradation. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) studies showed sorption of chromium as one of the major mechanisms for Cr (VI) removal by B9 cells. Acinetobacter sp. B9 was later on checked for bioremediation of real tannery wastewater. After 96 h of batch treatment of tannery effluent containing an initial 47 mg L?1 phenol and 16 mg L?1 Cr (VI), complete removal of phenol and 87 % reduction of Cr (VI) were attained, showing high efficiency of the bacterial strain for potential application in industrial pollution control.  相似文献   

8.
Kraft lignin (KL) is the major pollutant in black liquor. The bacterial strain Pandoraea sp. B-6 was able to degrade KL without any co-substrate under high alkaline conditions. At least 38.2 % of chemical oxygen demand and 41.6 % of color were removed in 7 days at concentrations from 1 to 6 g L?1. The optimum pH for KL degradation was 10 and the optimum temperature was 30 °C. The greatest activities of 2,249.2 U L?1 for manganese peroxidase and 1,120.6 U L?1 for laccase were detected on the third and fifth day at pH 10, respectively. Many small molecules, such as cinnamic acid, ferulic acid, 2-hydroxy benzyl alcohol, and vanillyl methyl ketone, were formed during the period of KL degradation based on GC–MS analysis. These results indicate that this strain has great potential for biotreatment of black liquor.  相似文献   

9.
A gram-positive bacterium Citricoccus nitrophenolicus (strain PNP1T, DSM 23311T, CCUG 59571T) isolated from a waste water treatment plant was capable of effectively degrading p-nitrophenol (pNP) as a source of carbon, nitrogen and energy for growth. Degradation of pNP required oxygen and resulted in the stoichiometric release of nitrite. Strain PNP1T also degraded 4-chlorophenol, phenol and salicylate. pNP was degraded at pH values between 6.8 and 10.0 and at temperatures between 15–32 °C. pNP at concentrations up to 150 mg L?1 were degraded during growth in media at pH ≤ 10, whereas 200 mg L?1 was completely inhibitory to growth. When incubated in an NH4Cl-free medium (pH 10) containing both pNP and acetate, pNP is degraded with concomitant release of nitrite which was subsequently assimilated during acetate degradation. Intact cells of strain PNP1T suspended in NaHCO3/Na2CO3 buffer were able to continuously degrade 200 mg L?1 pNP over a 40 day period at pH 10.  相似文献   

10.
Studies were carried out to screen and identify strains that are able to directly produce ferulic oligosaccharides (FOs) from wheat bran (WB). The inducement and distribution of hemicellulases from strain 2012, which was identified as a non-melanin secreting strain of Aureobasidium pullulans (A. pullulans), were also determined. In a 60 g/L WB solution, A. pullulans could produce 545 nmol/L FOs, 64.12 IU/mL xylanase and 0.14 IU/mL ferulic acid esterase (FAE). A. pullulans was cultivated in media with WB, glucose, xylose, sucrose, lactose or xylan as the carbon source, and hemicellulases were mainly induced by xylan and WB and inhibited by glucose and sucrose. Xylanase and FAE were mainly present in the culture filtrate, xylosidase in the hyphal filaments and arabinofuranosidase was a membrane-bound enzyme. The yield of FOs was positively correlated to the hemicellulases activity, and significantly positively (P < 0.05) correlated to the xylanase activity (r = 0.992).  相似文献   

11.
Boswellia serrata Roxb. is a source of several bioactive triterpenoids. Boswellic acid, obtained from oleo-gum resin of the tree, is a major potentially bioactive and medicinal compound. Unrestricted exploitation of its natural resource has led to its listing among the threatened and endangered species. Accumulation of the compound through tissue culture seems a promising option. The present work was conducted to study the effect of sodium pyruvate, l-phenylalanine, glycine, ferulic acid and sucrose on the growth of callus and accumulation of four principal isomers of boswellic acids, viz. β-boswellic acid (BBA), acetyl-β-boswellic acid (ABBA), 11-keto-β-boswellic acid (KBBA) and acetyl-11-keto-β-boswellic acid (AKBBA). Callus cultures obtained from embryo explants of Boswellia serrata on Murashige and Skoog medium containing 2.5 μM 6-benzyladenine, 15 μM indole acetic acid and 200 mg l?1 polyvinyl pyrrolidone was supplemented with varying concentrations of the supplements. Sodium pyruvate was most beneficial for the production of AKBBA (77 folds), BBA (27 folds) and ABBA (27 folds) at 10 mg l?1 and for KBBA (47 folds) at 5 mg l?1 when compared with control. It was closely followed by sucrose (50 g l?1) resulting in KBBA (22-fold), AKBBA (25-fold), BBA (17-fold) and ABBA (10-fold). Glycine, l-phenylalanine and ferulic acid were relatively less effective. It can be concluded that callus cultures manipulated with different concentrations of organic supplements, sodium pyruvate or sucrose, in particular, could be considered as an alternate strategy for direct production of boswellic acid and help in the conservation of the species.  相似文献   

12.
Lignin, a major component of biomass, composed of homogeneous phenolic monomers and functions as a synthetic precursor in the production of specialty chemicals or polymers. In this study, bacterial strains that metabolize lignin-derived low molecular weight compounds (LLCs) were cultured which are capable of LLC bioconversion. We used an LLC mixture primarily composed of vanillin (VL), syringaldehyde (SA), vanillic acid (VA) and p-hydroxybenzoic acid which were prepared from a commercial alkaline lignin product. Enrichment culture was repeated twice in a medium containing the soil sample, the LLCs and inorganic salts. Three bacterial strains belonging to the genera Pseudomonas, Ochrobactrum, and Klebsiella were isolated. We found that only VL, SA, and VA were metabolized by the Pseudomonas strain, which was then found to grow in a medium with VL or VA as the sole source of carbon and energy. The VL isomers, namely, ovanillin and isovanillin were converted to the corresponding carboxylic acids but were not utilized as carbon sources by Pseudomonas. VL and VA are intermediates in the pathway of bacterial degradation of eugenol via ferulic acid. Several bacterial strains that metabolize VL, eugenol, and ferulic acid have been reported but such strains are rarely isolated from enrichment culture medium containing LLCs, due to insufficient induction by the precursors in the LLC medium. In this study, we demonstrated that the microorganisms involved in the bioconversion of LLCs can be isolated from simple enrichment culture.  相似文献   

13.
Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol · min−1 · mg−1 in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity.  相似文献   

14.
The possibility of using rapeseed oil as a carbon source for microbiological production of α-ketoglutaric acid (KGA) has been studied. Acid formation on the selective media has been tested in 26 strains of Yarrowia lipolytica yeast, and the strain Y. lipolytica VKM Y-2412 was selected as a prospective producer of KGA from rapeseed oil. KGA production by the selected strain was studied in dependence on thiamine concentration, medium pH, temperature, aeration, and concentration of oil. Under optimal conditions (thiamine concentration of 0.063 μg?g cells?1, pH?3.5, 30 °C, high dissolved oxygen concentration (pO2) of 50 % (of air saturation), and oil concentration in a range from 20 to 60 g?l?1), Y. lipolytica VKM Y-2412 produced up to 102.5 g?l?1 of KGA with the mass yield coefficient of 0.95 g?g?1 and the volumetric KGA productivity (Q KGA) of 0.8 g?l?1?h?1.  相似文献   

15.
Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61–0.67 mol (mole glucose)?1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)?1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)?1 and productivity of 0.38 g L?1 h?1.  相似文献   

16.
Therapeutic angiogenesis is critical to wound healing and ischemic diseases such as myocardial infarction and stroke. For development of therapeutic agents, a search for new angiogenic agents is the key. Ferulic acid, a phytochemical found in many fruits and vegetables, exhibits a broad range of therapeutic effects on human diseases, including diabetes and cancer. This study investigated the augmenting effect of ferulic acid on angiogenesis through functional modulation of endothelial cells. Through endothelial cell migration and tube formation assays, ferulic acid (10?6–10?4 M) was found to induce significant angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro without cytotoxicity. With chorioallantoic membrane assay, ferulic acid (10?6–10?5 M) was also found to promote neovascularization in vivo. Using Western blot analysis and quantitative real-time polymerase chain reaction, we found that ferulic acid increased vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression in HUVECs. Furthermore, the amounts of hypoxic-induced factor (HIF) 1α mRNA and protein, the major regulator of VEGF and PDGF, also showed up-regulation by ferulic acid. Electrophoretic migration shift assay showed that the binding activity of HIF-1α was also enhanced with ferulic acid treatment of HUVECs. Moreover, inhibitors of extracellular-signal-regulated kinase 1/2 and phosphoinositide-3 kinase (PI3K) abolished the binding activity of HIF-1α and the subsequent activation of VEGF and PDGF production by ferulic acid. Thus, both mitogen-activated protein kinase and PI3K pathways were involved in the angiogenic effects of ferulic acid. Taken together, ferulic acid serves as an angiogenic agent to augment angiogenesis both in vitro and in vivo. This effect might be observed through the modulation of VEGF, PDGF and HIF-1α.  相似文献   

17.
Photosynthetic bacteria are known to utilize volatile fatty acids as a carbon source for growth and product formation. In this study, a new isolate, Rubrivivax benzoatilyticus PS-5, possessing self-flocculation properties, was cultivated in modified glutamate-malate (GM) medium containing glutamate and malate as carbon sources. The effect of acetic acid, propionic acid and butyric acid (at 1–4 g L?1) as co-substrates and 7.5 mM glycine, 10 mM succinic acid as precursors for 5-aminolevulinic acid (ALA) production from R. benzoatilyticus PS-5 was investigated. Among the volatile fatty acids tested, acetic acid was preferred to butyric acid and propionic acid, with the optimum concentrations of 3 g L?1, 1 g L?1 and 3 g L?1, respectively. The highest ALA production was 169.71 μM, 162.16 μM and 46.18 μM, respectively, while the highest productivity was 2.57 μM h?1, 2.25 μM h?1 and 0.96 μM h?1, respectively. The precursor was consumed completely (100 %) while the assimilation of the acetic acid and butyric acid was 62.50 % and 48.65 %, respectively. Supplementation of propionic acid (at 1–4 g l?1) had a negative effect on growth and ALA production. To increase production efficiency, the pH-control strategy (at pH 6.0–8.0) during fermentation was tested. The optimum pH was 7.0, giving the maximum ALA production of 286.18 μM and a productivity of 3.97 μM h?1. These values were 1.68-fold and 1.54-fold higher, respectively, than those under uncontrolled pH conditions.  相似文献   

18.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

19.
Some lactic acid bacteria produce volatile phenols in culture medium but this activity has not been extensively studied in wine conditions. Red and white wines were mixed with MRS medium at different ratios to study the influence of wine on the metabolism of p-coumaric and ferulic acids by Lactobacillus plantarum. In MRS broth supplemented with these precursors at 10 mg l?1, only 4-ethylphenol was produced (1 mg l?1) while, in the presence of wine, 4-vinylphenol was also obtained. Both volatile phenols are produced in nearly equal amounts (1 mg l?1) or almost only 4-vinylphenol depending on the MRS:wine ratio. Thus, wine favours the accumulation of 4-vinylphenol. Ferulic acid was not or was weakly metabolized in the conditions studied.  相似文献   

20.
The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ?=?0.1 h?1); slower growth was observed on succinate and acetic acid (μ?=?0.01 h?1). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ?=?0.1 h?1 on traditional mineral salt medium to μ?=?0.18 h?1 on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3?×?10?9 μg BAM h?1. Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号