首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive fungal opportunistic infections or mycoses have been on the rise with increase in the number of immuno-compromised patients accounting for associated high morbidity and mortality rates. The antifungal drugs are not completely effective due to increased resistance and varied susceptibility of fungi. Hence, the functional diversification study of novel targets has to be carried out. The enzyme glucosamine-6-phosphate synthase [EC 2.6.1.16], a novel drug target, catalyzes the rate-limiting step of the fungal cell-wall biosynthetic pathway, comprising four conserved domains, two glutaminase and sugar-isomerising (SIS) domains with active site. The amino acids within these domains tend to mutate simultaneously and exert mutual selective forces which might result in untoward fungal adaptations that are fixed through random genetic drift over time. The current study is an attempt to investigate such 'non-independent' coevolving residues which play critical functional and structural role in the protein. Residues with Shannon entropy ≦1 (calculated by the Protein Variability Server) were considered and subsequently, positional correlations were estimated by InterMap3D 1.3 server. It was observed that majority of coevolving pairs of first SIS domain involved interactions with hydrophobic leucine and found to be spatially coupled in 3-dimensional structure of the enzyme. The coevolving groups of Aspergillus niger and Rhizopus oryzae species might play a role in drug resistance. Such coevolutionary analysis is important for understanding the receptor-ligand interactions and effective drug designing.  相似文献   

2.
Glucosamine-6P synthase, which catalyzes glucosamine-6P synthesis from fructose-6P and glutamine, channels ammonia over 18 Å between its glutaminase and synthase active sites. The crystal structures of the full-length Escherichia coli enzyme have been determined alone, in complex with the first bound substrate, fructose-6P, in the presence of fructose-6P and a glutamine analog, and in the presence of the glucosamine-6P product. These structures represent snapshots of reaction intermediates, and their comparison sheds light on the dynamics of catalysis. Upon fructose-6P binding, the C-terminal loop and the glutaminase domains get ordered, leading to the closure of the synthase site, the opening of the sugar ring and the formation of a “closed” ammonia channel. Then, glutamine binding leads to the closure of the Q-loop to protect the glutaminase site, the activation of the catalytic residues involved in glutamine hydrolysis, the swing of the side chain of Trp74, which allows the communication between the two active sites through an “open” channel, and the rotation of the glutaminase domains relative to the synthase domains dimer. Therefore, binding of the substrates at the appropriate reaction time is responsible for the formation and opening of the ammonia channel and for the activation of the enzyme glutaminase function.  相似文献   

3.
Expression plasmids containing recombinant genes encoding three His(6)-tagged versions of the enzyme, glucosamine-6-phosphate synthase from Candida albicans, were constructed and overexpressed in Escherichia coli. The gene products were purified by metal-affinity chromatography to near homogeneity with 77-80% yield and characterized in terms of size and enzymatic properties. Presence of oligohistidyl tags at either of two ends did not affect enzyme quarternary structure but strongly influenced its catalytic activity. The His6-N-tagged enzyme completely lost an ability of glucosamine-6-phosphate formation and amidohydrolase activity but retained the hexosephosphate-isomerising activity. On the other hand, two His6-C-tagged versions of glucosamine-6-phosphate synthase exhibited amidohydrolase activity almost equal to that of the wild-type enzyme but only 18% of its hexosephosphate-isomerising activity and about 1.5% of the synthetic activity.  相似文献   

4.
Glucosamine-6-phosphate synthase (GlmS) is responsible for the first and rate-limiting step in the hexosamine biosynthetic pathway. It catalyzes the conversion of D-fructose-6P (F6P) into D-glucosamine-6P (GlcN6P) using L-glutamine (Gln) as nitrogen donor (synthase activity) according to an ordered bi-bi process where F6P binds first. In the absence of F6P, the enzyme exhibits a weak hydrolyzing activity of Gln into Glu and ammonia (glutaminase activity), whereas the presence of F6P strongly stimulates it (hemi-synthase activity). Until now, these different activities were indirectly measured using either coupled enzyme or colorimetric methods. In this work, we have developed a direct assay monitoring the heat released by the reaction. Isothermal titration calorimetry and differential scanning calorimetry were used to determine kinetic and thermodynamic parameters of GlmS. The direct determination at 37 °C of kinetic parameters and affinity constants for both F6P and Gln demonstrated that part of the ammonia produced by Gln hydrolysis in the presence of both substrates is not used for the formation of the GlcN6P. The full characterization of this phenomenon allowed to identify experimental conditions where this leak of ammonia is negligible. Enthalpy measurements at 25 °C in buffers of various heats of protonation demonstrated that no proton exchange with the medium occurred during the enzyme-catalyzed glutaminase or synthase reaction suggesting for the first time that both products are released as a globally neutral pair composed by the Glu carboxylic side chain and the GlcN6P amine function. Finally we showed that the oligomerization state of GlmS is concentration-dependent.  相似文献   

5.
An assay for glucosamine-6-phosphate synthase using a yeast glucosamine-6-phosphate N-acetyltransferase 1 (GNA1) as coupling enzyme was developed. GNA1 transfers the acetyl moiety from acetyl-coenzyme A (CoA) to glucosamine-6-phosphate, releasing coenzyme A. The assay measures the production of glucosamine-6-phosphate by either following the consumption of acetyl-CoA spectrophotometrically at 230nm or quantifying the free thiol with 5,5'-dithio-bis(2-nitrobenzoic acid) (Ellman's reagent) in a discontinuous manner. This method is simple to perform and can be adapted to a 96-well microtiter plate format, which will facilitate high-throughput inhibitor screening and mechanistic studies using purified GlmS.  相似文献   

6.
Accessory reproductive organs of male rat were found to contain high activities of glucosamine-6-phosphate synthase (glucosaminephosphate isomerase (glutamine-forming), EC 5.3.1.19). Castration caused drastic reduction (75%) in the enzyme activity of ventral prostate. Testosterone propionate administration restored the enzyme activity while cortisol and estradiol-17β did not cause any effect. Cycloheximide blocked the stimulation caused by testosterone.  相似文献   

7.
The active centers of phosphoglucose isomerase (PGI) and the hexose phosphate isomerase domain (HPI) of glucosamine-6-P (GlcN-6-P) synthase demonstrate apparent similarity in spatial arrangement of critical amino acid residues, except Arg272 of the former and Lys603 and Lys485 of the latter. Ten derivatives of d-hexitol-6-P, 5-phosphoarabinoate, or 6-phosphogluconate, structural analogues of putative cis-enolamine or cis-enolate intermediates, were tested as inhibitors of fungal GlcN-6-P synthase and PGI. None of the investigated compounds demonstrated equally high inhibitory potential against both enzymes. 2-Amino-2-deoxy-D-mannitol 6-P was found to be the strongest GlcN-6-P synthase inhibitor in the series, with an inhibition constant equal to 9.0 (+/-1.0) x 10(-6)M. On the contrary, 5-phosphoarabinoate (5PA) exhibited specificity for PGI, with K(i)=2.2 (+/-0.1) x 10(-6) M. N-acetylation substantially lowered the GlcN-6-P synthase inhibitory potential of 2-amino-2-deoxy-D-glucitol-6-P but strongly enhanced inhibitory potential of this compound towards PGI. Molecular modeling studies revealed that interactions of the C1-C2 part of transition state analogue inhibitors with the respective areas demonstrating different distribution of molecular electrostatic potential (MEP) inside HPI and PGI active centers determined enzyme:ligand affinity. In Escherichia coli HPI, a patch of the negative potential created by Glu488 aided by Val399, supposed to stabilize a putative positively charged intermediate, especially attracts ligands containing 2-amino function. The Arg272, Lys210, and Gly271 peptide bond nitrogen system, present in the corresponding space of rabbit PGI, creates an area of positive MEP, stabilizing cis-enolate intermediate and attracting its structural mimics, such as 5PA.  相似文献   

8.
Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is known as a promising target for antimicrobial agents and antidiabetics. Several compounds of natural or synthetic origin have been identified as inhibitors of this enzyme. This set comprises highly selective l-glutamine, amino sugar phosphate or transition state intermediate cis-enolamine analogues. Relatively low antimicrobial activity of these inhibitors, poorly penetrating microbial cell membranes, has been improved using the pro-drug approach. On the other hand, a number of heterocyclic and polycyclic compounds demonstrating antimicrobial activity have been presented as putative inhibitors of the enzyme, based on the results of molecular docking to GlcN-6-P synthase matrix. The most active compounds of this group could be considered promising leads for development of novel antimicrobial drugs or antidiabetics, provided their selective toxicity is confirmed.  相似文献   

9.
Recent expansion of immunocompromised population has led to significant rise in zygomycosis caused by filamentous fungus Rhizopus oryzae. Due to emergence of fungal resistance and side-effects of antifungal drugs, there is increased demand for novel drug targets. The current study elucidates molecular interactions of peptide drugs with G-6-P synthase (catalyzing the rate-limiting step of fungal cell wall biosynthetic pathway) of R.oryzae by molecular docking studies. The PDB structures of enzyme in R.oryzae are not known which were predicted using I-TASSER server and validated with PROCHECK. Peptide inhibitors, FMDP and ADGP previously used against enzyme of E.coli (PDBid: 1XFF), were used for docking studies of enzyme in R.oryzae by SchrödingerMaestro v9.1. To investigate binding between enzyme and inhibitors, Glide and Induced Fit docking were performed. IFD results of 1XFF with FMDP yielded C1, R73, W74, T76, G99 and D123 as the binding sites. C379 and Q427 appear to be vital for binding of R.oryzae enzymes to inhibitors. The comparison results of IFD scores of enzyme in R.oryzae and E.coli (PDBid: 2BPL) yield appreciable score, hinting at the probable effectiveness of inhibitors FMDP and ADGP against R.oryzae, with ADGP showing an improved enzyme affinity. Moreover, the two copies of gene G-6-P synthase due to extensive fungal gene duplication, in R. oryzae eliminating the problem of drug ineffectiveness could act as a potential antifungal drug target in R. oryzae with the application of peptide ligands.  相似文献   

10.
Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5′-diphospho-N-acetyl-d-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts d-fructose-6-phosphate (Fru-6P) and l-glutamine (Gln) into d-glucosamine-6-phosphate (GlcN-6P) and l-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.  相似文献   

11.
A series of N-acyl peptides 19, containing an inhibitor of glucosamine-6-phosphate synthase have been synthesised and tested against Candida strains. N-Acylated peptides inhibit glucosamine-6-phosphate synthase in cell free extracts from Candida albicans. Antifungal activities of the tested compounds correlated with their lipophilic properties. Peptides acylated with decanoic acid were found to be the most potent in the series. N-decanoylpeptides also showed activity against Candida albicans Gu5 resistant mutant with Cdr1 and Cdr2 drug extrusion proteins that causes MDR by an active efflux mechanism.  相似文献   

12.
Glucosamine-6-phosphate synthase (GlmS) channels ammonia from glutamine at the glutaminase site to fructose 6-phosphate (Fru6P) at the synthase site. Escherichia coli GlmS is composed of two C-terminal synthase domains that form the dimer interface and two N-terminal glutaminase domains at its periphery. We report the crystal structures of GlmS alone and in complex with the glucosamine-6-phosphate product at 2.95 Å and 2.9 Å resolution, respectively. Surprisingly, although the whole protein is present in this crystal form, no electron density for the glutaminase domain was observed, indicating its mobility. Comparison of the two structures with that of the previously reported GlmS-Fru6P complex shows that, upon sugar binding, the C-terminal loop, which forms the major part of the channel walls, becomes ordered and covers the synthase site. The ordering of the glutaminase domains likely follows Fru6P binding by the anchoring of Trp74, which acts as the gate of the channel, on the closed C-terminal loop. This is accompanied by a major conformational change of the side chain of Lys503# of the neighboring synthase domain that strengthens the interactions of the synthase domain with the C-terminal loop and completely shields the synthase site. The concomitant conformational change of the Lys503#-Gly505# tripeptide places catalytic His504# in the proper position to open the sugar and buries the linear sugar, which is now in the vicinity of the catalytic groups involved in the sugar isomerization reaction. Together with the previously reported structures of GlmS in complex with Fru6P or glucose 6-phosphate and a glutamine analogue, the new structures reveal the structural changes occurring during the whole catalytic cycle.  相似文献   

13.
Sachadyn  Pawel 《Mycopathologia》1998,142(2):67-70
The 3' part of the glucosamine-6-phosphate synthase gene from Histoplasma capsulatum was PCR amplified using degenerate primers designed from the known glucosamine-6-phosphate synthase gene sequences, cloned and sequenced. The computer analysis of the 676 bp sequence revealed the presence of two introns. The identities of the deduced amino acid sequence to the corresponding Saccharomyces cerevisiae and Candida albicans fragment are 65 and 63.8%, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
A series of novel inhibitors of glucosamine-6-phosphate synthase, analogues of AADP and BADP, have been synthesized and their inhibitory, lipophilic and antifungal properties have been tested. The improvement in lipophilicity has not much affected the antifungal activity of the new compounds. Dipeptides containing norvaline and selected inhibitors have shown substantial activity against S. cerevisiae and C. glabrata and only poor activity against C. albicans strain. These peptides do not seem to be toxic towards human cells.  相似文献   

15.
Glucosamine 6-phosphate (GlcN-6-P) synthase is an ubiquitous enzyme that catalyses the first committed step in the reaction pathway that leads to formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), a precursor of macromolecules that contain amino sugars. Despite sequence similarities, the enzyme in eukaryotes is tetrameric, whereas in prokaryotes it is a dimer. The activity of eukaryotic GlcN-6-P synthase (known as Gfa1p) is regulated by feedback inhibition by UDP-GlcNAc, the end product of the reaction pathway, whereas in prokaryotes the GlcN-6-P synthase (known as GlmS) is not regulated at the post-translational level. In bacteria and fungi the enzyme is essential for cell wall synthesis. In human the enzyme is a mediator of insulin resistance. For these reasons, Gfa1p is a target in anti-fungal chemotherapy and in therapeutics for type-2 diabetes. The crystal structure of the Gfa1p isomerase domain from Candida albicans has been analysed in complex with the allosteric inhibitor UDP-GlcNAc and in the presence of glucose 6-phosphate, fructose 6-phosphate and an analogue of the reaction intermediate, 2-amino-2-deoxy-d-mannitol 6-phosphate (ADMP). A solution structure of the native Gfa1p has been deduced using small-angle X-ray scattering (SAXS). The tetrameric Gfa1p can be described as a dimer of dimers, with each half similar to the related enzyme from Escherichia coli. The core of the protein consists of the isomerase domains. UDP-GlcNAc binds, together with a metal cation, in a well-defined pocket on the surface of the isomerase domain. The residues responsible for tetramerisation and for binding UDP-GlcNAc are conserved only among eukaryotic sequences. Comparison with the previously studied GlmS from E. coli reveals differences as well as similarities in the isomerase active site. This study of Gfa1p focuses on the features that distinguish it from the prokaryotic homologue in terms of quaternary structure, control of the enzymatic activity and details of the isomerase active site.  相似文献   

16.
Highlights of glucosamine-6P synthase catalysis   总被引:1,自引:0,他引:1  
l-Glutamine:d-fructose-6-phosphate amidotransferase, also known as glucosamine-6-phosphate synthase (GlcN6P synthase), which catalyzes the first step in a pathway leading to the formation of uridine 5′-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), is a key point in the metabolic control of the biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of the reaction catalyzed by GlcN6P synthase is complex and involves amide bond cleavage followed by ammonia channeling and sugar isomerization. This article provides a comprehensive overview of the present knowledge on this multi-faceted enzyme emphasizing the progress made during the last five years.  相似文献   

17.
The large protein motions of the bacterial enzyme glucosamine-6-phosphate synthase have been addressed using full atom normal modes analysis for the empty, the glucose-6-phosphate and the glucose-6-phosphate + glutamate bound proteins. The approach that was used involving energy minimizations along the normal modes coordinates identified functional motions of the protein, some of which were characterized earlier by X-ray diffraction studies. This method made it possible for the first time to highlight significant energy differences according to whether none, only one or both of the active sites of the protein were occupied. Our data favoured a specific motion of the glutamine binding domain following the fixation of fructose-6-phosphate and suggested a rigidified structure with both sites occupied. Here, we show that most of the collective large amplitude motions of glucosamine-6-phosphate synthase that are modulated by ligand binding are crucial for the enzyme catalytic cycle, as they strongly modify the geometry of both the ammonia channel and the C-tail, demonstrating their role in ammonia transfer and ligand binding.  相似文献   

18.
Glucosamine-6-phosphate deaminase from Escherichia coli (EC 3.5.99.6) is an allosteric enzyme, activated by N-acetylglucosamine 6-phosphate, which converts glucosamine-6-phosphate into fructose 6-phosphate and ammonia. X-ray crystallographic structural models have showed that Arg172 and Lys208, together with the segment 41-44 of the main chain backbone, are involved in binding the substrate phospho group when the enzyme is in the R activated state. A set of mutants of the enzyme involving the targeted residues were constructed to analyze the role of Arg172 and Lys208 in deaminase allosteric function. The mutant enzymes were characterized by kinetic, chemical, and spectrometric methods, revealing conspicuous changes in their allosteric properties. The study of these mutants indicated that Arg172 which is located in the highly flexible motif 158-187 forming the active site lid has a specific role in binding the substrate to the enzyme in the T state. The possible role of this interaction in the conformational coupling of the active and the allosteric sites is discussed.  相似文献   

19.
垫状卷柏海藻糖-6-磷酸合成酶基因的克隆及功能分析   总被引:1,自引:0,他引:1  
林荆  付凤玲  蒋伟  牟禹  雍太明  李晚忱 《遗传》2010,32(5):498-504
海藻糖-6-磷酸合成酶(Trehalose-6-phosphate synthse, TPS)是植物海藻糖合成途径的关键酶, 在旱生卷柏等复苏植物对逆境胁迫应答中起重要作用。文章以我国特有旱生植物垫状卷柏(Selaginella pulvinata)为材料, 采用同源扩增与RACE技术相结合的方法克隆了海藻糖-6-磷酸合成酶基因SpTPS1, cDNA全长3 223 bp, 包括一个2 790 bp的开放阅读框, 推导的氨基酸序列与模式物种的海藻糖-6-磷酸合成酶具有较高的序列相似性, 催化活性中心保守位点基本一致。酵母功能互补实验证明, 用SpTPS1基因开放阅读框转化的海藻糖合成酶基因突变(tps1△)酵母菌株, 可恢复在以葡萄糖作为唯一碳源培养基上的生长, 说明垫状卷柏海藻糖-6-磷酸合成酶基因SpTPS1的编码蛋白具有生物活性, 可应用于植物抗逆性的转基因改良。  相似文献   

20.
Amino acid replacements in the active site of glucosamine-6-P deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) involving the residues D141 and E148 produce atypical allosteric kinetics. These residues are located in the chain segment 139-156 which is part of the active site and which also forms several intersubunit contacts close to the allosteric site. In the D141N and E148Q mutant forms of this deaminase, there is an inversion of the effect of its physiological allosteric effector, N-acetylglucosamine 6-P, which becomes an inhibitor at substrate concentrations above a critical value. For both mutants, this particular point appears at low substrate concentration and the inhibition by the allosteric activator is the dominant effect in velocity versus substrate curves. These effects are analyzed as a particular case of the concerted allosteric model, assuming that the R state, the conformer displaying the higher affinity for the substrate, is the less catalytic state, thus producing an inverted allosteric response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号