首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.  相似文献   

2.
A series of heterocyclic benzenesulfonamides incorporating 2-mercapto-3H-quinazolin-4-one tails were prepared by condensation of substituted anthranilic acids with 4-isothiocyanato-benzenesulfonamide. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (trans-membrane, tumor-associated enzymes). They acted as medium potency inhibitors of hCA I (KIs of 81.0–3084 nM), being highly effective as hCA II (KIs in the range of 0.25–10.8 nM), IX (KIs of 3.7–50.4 nM) and XII (KIs of 0.60–52.9 nM) inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of three isoforms (CA II, IX and XII) is dysregulated.  相似文献   

3.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (KIs in the range of 1.5–5.7 μM), two derivatives were strong hCA II inhibitors (KIs in the range of 15–16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160–1950 nM and hCA XII with inhibition constants in the range 1.2–413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

4.
Sulfocoumarins behave as interesting inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Here, we report a new series of 7-substituted derivatives which were obtained by the click chemistry approach from 7-propargyloxy-sulfocoumarin and aryl azides incorporating halogens, hydroxy, methoxy and carboxyl moieties in their molecules. The new compounds were screened for the inhibition on four physiologically relevant human CA (hCA) isoforms, the cytosolic hCA I and II and the transmembrane tumor-associated hCA IX and XII. The new compounds did not inhibit the cytosolic isoforms but were low nanomolar inhibitors of the tumor-associated ones hCA IX and XII.  相似文献   

5.
A series of curcumin inspired sulfonamide derivatives was prepared from various chalcones and 4-sulfamoyl benzaldehyde via Claisen–Schmidt condensation. All new compounds were assayed as inhibitors of four human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I, II, IX and XII. Interesting inhibitory activities were observed against all these isoforms. hCA I, an isoform involved in several eye diseases was inhibited moderately with KIs in the range of 191.8–904.2?nM, hCA II, an antiglaucoma drug target was highly inhibited by the new sulfonamides, with KIs in the range of 0.75–8.8?nM. hCA IX, a tumor-associated isoform involved in cancer progression and metastatic spread was potently inhibited by the new sulfonamides, with KIs in the range of 2.3–87.3?nM, whereas hCA XII, and antiglaucoma and anticancer drug target, was inhibited with KIs in the range of 6.1–71.8?nM. It is noteworthy that one of the new compounds, 5d, was found to be almost 9 times more selective against hCA II (KI =?0.89?nM) over hCA IX and hCA XII, whereas 5e was 3 and 70 times more selective against hCA II (KI =?0.75?nM) over hCA IX and hCA XII, respectively.  相似文献   

6.
Abstract

A series of coumarins and benzocoumarins incorporating methyl and hydroxyl moieties in the heterocyclic ring were investigated for the inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). These coumarins were very weak or ineffective as inhibitors of the house-keeping, offtarget isoforms CA I and II, but showed effective, submicromolar inhibition of the transmembrane, tumor-associated isoforms CA IX and to a slightly less extent, CA XII. The nature and position of the groups substituting the coumarin ring influenced CA inhibitory properties. 4-Methyl-5,7-dihydroydroxycoumarin showed KIs >200?µM against CA I and II, of 0.19?µM against CA IX and of 6.4?µM against CA XII, being thus a selective, efficient inhibitor for the tumor-associated over cytosolic CA isoforms. These compounds are interesting leads for designing isoform-selective enzyme inhibitors.  相似文献   

7.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

8.
A series of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides possessing various 2-, 3- or 4- substituted phenyl groups with methyl-, halogeno- and methoxy-functionalities, or a perfluorophenyl moiety, has been derivatized by reaction with 2,4,6-trimethylpyrylium perchlorate. The new sulfonamides were evaluated as inhibitors of four mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms, that is, CA I, II (cytosolic), CA IX and XII (transmembrane, tumor-associated forms). Excellent inhibitory activity was observed against hCA IX with most of these sulfonamides, and against hCA XII with some of the new compounds. These compounds were generally less effective inhibitors of hCA II. Being membrane impermeant, these positively-charged sulfonamides are interesting candidates for targeting the tumor-associated CA IX and XII, as possible diagnostic tools or therapeutic agents.  相似文献   

9.
A series of 4 and 5 nitro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzenesulfonamide derivatives with 4 and 3-nitrophthalic anhydrides. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated hCA IX and XII. Most of the novel compounds were medium potency-weak hCA I inhibitors (Kis in the range of 295–10,000 nM), but were more effective hCA II inhibitors (Kis of 1.7–887 nM). The tumor-associated hCA IX was also inhibited, with Kis in the micromolar range, whereas against hCA XII the inhibition constants were in the range of 90–3746 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking studies was performed in order to rationalize the activities reported and binding mode to different hCA as inhibitors.  相似文献   

10.
A series of benzenesulfonamides incorporating cyanoacrylamide moieties (tyrphostine analogues) have been obtained by reaction of sulfanilamide with ethylcyanoacetate followed by condensation with aromatic/heterocyclic aldehydes, isothiocyanates or diazonium salts. The new compounds have been investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4. 2.1.1), and more specifically against the cytosolic human (h) isoforms hCA I and II, as well as the transmembrane, tumor-associated ones CA IX and XII, which are validated antitumor targets. Most of the new benzenesulfonamides were low nanomolar or subnanomolar CA IX/XII inhibitors whereas they were less effective as inhibitors of CA I and II. The structure–activity relationship for this class of effective CA inhibitors is also discussed. Generally, electron donating groups in the starting aldehyde reagent favored CA IX and XII inhibition, whereas halogeno, methoxy and dimethylamino moieties led to very potent CA XII inhibitors.  相似文献   

11.
A series of novel 7-hydroxycoumarin-3-carboxamides was synthesized by the reaction of 7-hydroxy-2-oxo-2H-chromene-3-carboxylic acid with various substituted aromatic amines. The newly synthesized compounds were evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results show that the newly synthesized 7-hydroxycoumarin-3-carboxamides (4a-n) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. The inhibition constants ranged from sub micromolar to low micromolar. Amongst all the compounds tested, compound 4m was the most effective inhibitor exhibiting sub micromolar potency against both hCA IX and hCA XII, with a Ki of 0.2 µM. Therefore, it can be anticipated that compound 4m can serve as a lead for development of anticancer therapy by exhibiting a novel mechanism of action. The binding modes of the most potent compounds within hCA IX and XII catalytic clefts were investigated by docking studies.  相似文献   

12.
Abstract

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.  相似文献   

13.
With an aim to develop novel heterocyclic hybrids as potent anticancer agents, we synthesized a series of coumarin-1,3,4-oxadiazole hybrids (7a-t) and evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results clearly indicated that the coumarin-1,3,4-oxadiazole derivatives (7a-t) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. Among all, compound 7b, exhibited significant inhibition in lower micromolar potency against hCA XII, with a Ki of 0.16 µM and compound 7n, exhibited significant inhibition in lower micromolar potency against hCA IX, with a Ki of 2.34 µM respectively. Therefore, compound 7b and 7n could be the potential leads for development of selective anticancer agents by exhibiting a novel mechanism of action through hCA IX and XII inhibition.  相似文献   

14.
Small libraries of N-substituted saccharin and N-/O-substituted acesulfame derivatives were synthesized and tested as atypical and selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Most of them inhibited hCA XII in the low nanomolar range, hCA IX with KIs ranging between 19 and 2482 nM, whereas they were poorly active against hCA II (KIs >10 μM) and hCA I (KIs ranging between 318 nM and 50 μM). Since hCA I and II are ubiquitous off-target isoforms, whereas the cancer-related isoforms hCA IX and XII were recently validated as drug targets, these results represent an encouraging achievement in the development of new anticancer candidates. Moreover, the lack of a classical zinc binding group in the structure of these inhibitors opens innovative, yet unexplored scenarios for different mechanisms of inhibition that could explain the high inhibitory selectivity. A computational approach has been carried out to further rationalize the biological data and to characterize the binding mode of some of these inhibitors.  相似文献   

15.
A series of 6-substituted sulfocoumarins incorporating substituted-1,2,3-triazol-4-yl-/5-yl moieties were synthesized by employing click chemistry. The new sulfocoumarins incorporated cycloalkyl, tert-butyl and substituted aryl moieties at the triazole ring, and were investigated for the inhibition of four human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, the cytosolic hCA I and II; and the transmembrane, tumor-associated hCA IX and XII. The triazole-substituted sulfocoumarins did not inhibit the ubiquitous, off-target cytosolic isoforms hCA I and II (KIs >10 μM) but showed effective inhibition against the two transmembrane CAs, with KIs ranging from 7.2 to 10.5 nM against hCA IX, and between 5.5 and 17.7 nM against hCA XII. As hCA IX and XII are validated anti-tumor targets, such prodrug, isoform-selective inhibitors as the sulfocoumarins reported here, may be useful for identifying suitable drug candidates for clinical trials.  相似文献   

16.
Abstract

A small series of 2,4-dioxothiazolidinyl acetic acids was prepared from thiourea, chloroacetic acid, aromatic aldehydes, and ethyl-2-bromoacetate. They were assayed for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, the cytosolic hCA I and II, and the transmembrane hCA IX and XII, involved among others in tumorigenesis (hCA IX and XII) and glaucoma (hCA II and XII). The two cytosolic isoforms were not inhibited by these carboxylates, which were also rather ineffective as hCA IX inhibitors. On the other hand, they showed submicromolar hCA XII inhibition, with KIs in the range of 0.30–0.93?µM, making them highly CA XII-selective inhibitors.  相似文献   

17.
A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a KI of 3.7–4.5 μM, whereas the remaining derivatives showed inhibition constants in the range of 6.0–1560 μM for hCA I and of 6.0–1050 μM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (KIs of 7.6–12.3 μM) whereas the arylalkenyl and aryl–alkyl derivatives generally showed weaker inhibitory properties (KIs of 34–531 μM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)2 moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.  相似文献   

18.
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis?>?10?µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298?nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432?nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.  相似文献   

19.
We report here a series of 2-thiophene-sulfonamides incorporating 1-substituted aryl-1,2,3-triazolyl moieties, prepared by click chemistry from 5-ethynylthiophene-2-sulfonamide and substituted aryl azides. The new sulfonamides were investigated as inhibitors of the zinc metalloenzyme CA (EC 4.2.1.1), and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated ones hCA IX and XII: The new compounds were medium–weak hCA I inhibitors (KIs in the range of 224–7544 nM), but were compactly, highly effective, low nanomolar hCA II inhibitors (KIs of 2.2–7.7 nM). The tumor-associated hCA IX was inhibited with KIs ranging between 5.4 and 811 nM, whereas hCA XII with inhibition constants in the range of 3.4–239 nM. The X-ray crystal structure of the adducts of two such compounds bound to hCA II (one incorporating 1-naphthyl, the other one 3-cyanophenyl moieties) evidenced the reasons of the high affinity for hCA II. Highly favorable, predominantly hydrophobic interactions between the sulfonamide scaffold and the hCA II active site were responsible for the binding, in addition to the coordination of the sulfamoyl moiety to the zinc ion. The tails of the two inhibitors adopted very diverse orientations when bound to the active site, with the naphthyltriazolyl moiety orientated towards the hydrophobic half of the active site, and the 3-cyanophenyl one pointing towards the hydrophilic half. These data may be used for the structure-based drug design of even more effective hCA II inhibitors, with potential use as antiglaucoma agents or as diuretics.  相似文献   

20.
Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7 nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号