首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This article describes the syntheses and SAR of a series of imidazolopyrimidine derivatives, which are evaluated as inhibitors of PI3-Kinase (PI3 K) and mTOR. These compounds were found to be ATP competitive with good tumor cell growth inhibition, and suppression of pathway specific biomakers such as phosphorylation of Akt at T308.  相似文献   

2.
A high throughput screening campaign was designed to identify allosteric inhibitors of Chk1 kinase by testing compounds at high concentration. Activity was then observed at Km for ATP and at near-physiological concentrations of ATP. This strategy led to the discovery of a non-ATP competitive thioquinazolinone series which was optimized for potency and stability. An X-ray crystal structure for the complex of our best inhibitor bound to Chk1 was solved, indicating that it binds to an allosteric site ~13 Å from the ATP binding site. Preliminary data is presented for several of these compounds.  相似文献   

3.
The bacterial natural product UK-1 and several structural analogs inhibit replication of the hepatitis C virus in the replicon assay, with IC50 values as low as 0.50 μM. The NS3 helicase has been identified as a possible target of inhibition for several of these compounds, while the remaining inhibitors act via an undetermined mechanism. Gel shift assays suggest that helicase inhibition is a direct result of inhibitor–enzyme binding as opposed to direct RNA binding, and the ATPase activity of NS3 is not affected. The syntheses and biological results are presented herein.  相似文献   

4.
Recently inhibition of ROS1 kinase has proven to be a promising strategy for several indications such as glioblastoma, non-small cell lung cancer (NSCLC), and cholangiocarcinoma. Our team reported trisubstituted pyrazole-based ROS1 inhibitors by which two inhibitors showed good IC50 values in enzyme-based screening. To develop more advanced ROS1 inhibitors through SAR this trisubstituted pyrazole-based scaffold has been built. Consequently, 16 compounds have been designed, synthesized and shown potent IC50 values in the enzymatic assay, which are from 13.6 to 283 nM. Molecular modeling studies explain how these ROS1 kinase inhibitors revealed effectively the key interactions with ROS1 ATP binding site. Among these compounds, compound 9a (IC50 = 13.6 nM) has exerted 5 fold potency than crizotinib and exhibited high degree of selectivity (selectivity score value = 0.028) representing the number of non-mutant kinases with biological activity over 90% at 10 μM.  相似文献   

5.
A novel class of potent PI3Kδ inhibitors with >1000-fold selectivity against other class I PI3K isoforms is described. Optimization of the substituents on a triazole aminopyrazine scaffold, emerging from an in-house PI3Kα program, turned moderately selective PI3Kδ compounds into highly potent and selective PI3Kδ inhibitors. These efforts resulted in a series of aminopyrazines with PI3Kδ IC50 ? 1 nM in the enzyme assay, some of the most selective PI3Kδ inhibitors published to date, with a cell potency in a JeKo-cell assay of 20–120 nM.  相似文献   

6.
Glycogen synthase kinase 3β (GSK-3β) plays a key role in insulin metabolizing pathway and therefore inhibition of the enzyme might provide an important therapeutic approach for treatment of insulin resistance and type 2 diabetes. Recently, discovery of ATP noncompetitive inhibitors is gaining importance not only due to their generally increased selectivity but also for the potentially subtle modulation of the target. These kinds of compounds include allosteric modulators and substrate competitive inhibitors. Here we reported two benzothiazinone compounds (BTO), named BTO-5h (IC50 = 8 μM) and BTO-5s (IC50 = 10 μM) as novel allosteric modulator and substrate competitive inhibitor of GSK-3β, respectively. Their different action modes were proved by kinetic experiments. Furthermore, BTO-5s was selected to check the kinases profile and showed little or even no activity to a panel of ten protein kinases at 100 μM, indicating it has good selectivity. Docking studies were performed to give suggesting binding modes which can well explain their impacts on the enzyme. Moreover, cell experiments displayed both compounds reduced the phosphorylation level of glycogen synthase in an intact cell, and greatly enhanced the glucose uptake in both HpG2 and 3T3-L1 cells. All of these results suggested BTO-5s and BTO-5h maybe have potentially therapeutic value for anti-diabetes. The results also offer a new scaffold for designing and developing selective inhibitors with novel mechanisms of action.  相似文献   

7.
A novel series of anilinoquinazoline compounds with C-6 urea-linked side chains was designed and synthesized as reversible inhibitors of epidermal growth factor receptor (EGFR) based on the structure–activity relationships (SARs) of anilinoquinazoline inhibitors. All compounds demonstrated good inhibition of EGFR wild type (EGFR wt) (IC50 = 0.024–1.715 μM) and inhibited proliferation of A431cell line (IC50 = 0.116–22.008 μM). The binding mode of compounds 8a, 8d, 8k and 8o was consistent with the biological results. Moreover, compounds 8k and 8l almost completely blocked the phosphorylation of EGFR in A431 cell line at 0.01 μM. Interestingly, all of the compounds also demonstrated moderate inhibition of EGFR/T790M/L858R (IC50 = 0.049–5.578 μM). In addition, compounds 8f and 8h blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (10 μM), and compound 8f was confirmed to be an irreversible inhibitor through the dilution method. Importantly, the compounds with C-6 urea-linked side chains which did not contain Michael acceptors demonstrated moderate to strong irreversible EGFR inhibition.  相似文献   

8.
Very few selective inhibitors of the zeta-chain associated protein kinase 70 kDa (ZAP70) have been reported despite its importance in autoimmune diseases. Here, to induce a fit of the so-called gatekeeper residue (Met414) and hydrophobic pocket next to it, a potent Janus kinase 2 (JAK2) inhibitor was first docked into the ATP binding site of ZAP70 by structural alignment of the kinase domains. The resulting model of the complex between ZAP70 and the JAK2 inhibitor was then relaxed by an explicit solvent molecular dynamics simulation with restraints on the backbone atoms. High-throughput docking into the induced-fit conformation of ZAP70 generated by molecular dynamics has revealed 10 low-micromolar inhibitors which correspond to six distinct chemotypes. One of these ZAP70 inhibitors has an IC50 of 110 nM for JAK2.  相似文献   

9.
Selective PDE3 (phosphodiesterase 3) inhibitors improve cardiac contractility and may be used in congestive heart failure. However, their proarrhythmic potential is the most important side effect. In this work ten new synthetic compounds (3-[(4-methyl-2-oxo-1,2-dihydro-6-quinolinyl)oxy]methylbenzamide analogs: 4aj) were designed, synthesized and tested for the inhibitory activity against human PDE3A and PDE3B. The strategy of the design was based on the structure of vesnarinone (a selective PDE3 inhibitor) and its docking analysis results. The synthetic compounds showed better PDE3 inhibitory activity in comparison with vesnarinone. Using docking analysis, a common binding model of each compound toward PDE3 was suggested. In the next step the potential cardiotonic activity of the best PDE3A inhibitors (4b, IC50 = 0.43 ± 0.04 μM) was evaluated by using the spontaneously beating atria model. In the experiment, atrium of reserpine-treated rat was isolated and the contractile and chronotropic effects of the synthetic compound were assessed. That was carried out in comparison with vesnarinone. The best pharmacological profile was obtained for the compound 4b, which displayed selectivity for increasing the force of contraction (46 ± 3% change over the control) rather than the frequency rate (16 ± 4% change over the control) at 100 μM.  相似文献   

10.
The development of a series of potent and highly selective casein kinase 1δ/ε (CK1δ/ε) inhibitors is described. Starting from a purine scaffold inhibitor (SR-653234) identified by high throughput screening, we developed a series of potent and highly kinase selective inhibitors, including SR-2890 and SR-3029, which have IC50 ? 50 nM versus CK1δ. The two lead compounds have ?100 nM EC50 values in MTT assays against the human A375 melanoma cell line and have physical, in vitro and in vivo PK properties suitable for use in proof of principle animal xenograft studies against human cancer cell lines.  相似文献   

11.
Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, β, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 μM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 μM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner.  相似文献   

12.
A public compound library with 260,000 compounds was screened virtually by computational docking for novel inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Docking was performed with the program GOLD in conjunction with a high resolution X-ray crystal structure of SERCA. Compounds that were predicted to be active were tested in bioassays. Nineteen novel compounds were discovered that were capable of inhibiting the ATP hydrolysis activity of SERCA at concentrations below 50 μM. Crucial enzyme/inhibitor interactions were identified by analyzing the docking-predicted binding poses of active compounds. Like other SERCA inhibitors, the newly discovered compounds are of considerable medicinal interest because of their potential for cancer chemotherapy.  相似文献   

13.
The PI3K/AKT/mTOR pathway is one of the most commonly disrupted signaling pathways that plays a role in the development and pathogenicity of multiple cancers. Therefore, the critical proteins of this pathway have been targeted for anticancer therapy. The scientific community has increasingly been realizing the anti-cancer therapeutic potential of naphthoquinone analogs. These compounds constitute a major class of diverse sets of plant metabolites, which include various natural products and synthetic compounds with proven anticancer activity. The current study involved structural computational biology approaches to explore compounds from a diverse pool of naphthoquinone analogs that can inhibit key cancer-signaling proteins phosphoinositide 3-kinase (PI3K), protein kinase B, PKB (AKT), and mammalian target of rapamycin (mTOR). The novel compound identified commonly among the top 10 dock score lists of PI3K, AKT, and mTOR was selected for further study and proposed as a potential inhibitor of the 3 cancer-signaling proteins and an anticancer agent. Further, to check the docking accuracy and potential of the compound, post docking analyses, namely, binding comparison with the native ligand, the role of the interacting residue role in binding, predicted binding energy and dissociation constant calculations, etc., were performed. All these measures showed good-quality binding, and thus provide weight to our prediction of the novel compound as a pan PI3K/AKT/mTOR inhibitor and an anticancer agent. Finally, to compare the binding and similarity in the active sites of the 3 protein kinases, a ligand-based active site alignment was performed and analyzed. Thus, the study proposed a novel naphthoquinone analog as a potential anticancer drug, and provided comparative structural insight into its binding to the 3 protein kinases.  相似文献   

14.
Tumor metastasis is responsible for ~ 90% of all cancer deaths. One of the key steps of tumor metastasis is tumor cell migration and invasion. Filopodia are cell surface extensions that are critical for tumor cell migration. Fascin protein is the main actin-bundling protein in filopodia. Small-molecule fascin inhibitors block tumor cell migration, invasion, and metastasis. Here we present the structural basis for the mechanism of action of these small-molecule fascin inhibitors. X-ray crystal structural analysis of a complex of fascin and a fascin inhibitor shows that binding of the fascin inhibitor to the hydrophobic cleft between the domains 1 and 2 of fascin induces a ~ 35o rotation of domain 1, leading to the distortion of both the actin-binding sites 1 and 2 on fascin. Furthermore, the crystal structures of an inhibitor alone indicate that the conformations of the small-molecule inhibitors are dynamic. Mutations of the inhibitor-interacting residues decrease the sensitivity of fascin to the inhibitors. Our studies provide structural insights into the molecular mechanism of fascin protein function as well as the action of small-molecule fascin inhibitors.  相似文献   

15.
16.
Monoamine oxidase (MAO) catalyzes the oxidation of monoamines that act as neurotransmitters. During a target-based screening of natural products using two isoforms of recombinant human MAO-A and MAO-B, purpurin (an anthraquinone derivative) was found to potently and selectively inhibit MAO-A, with an IC50 value of 2.50 μM, and not to inhibit MAO-B. Alizarin (also an anthraquinone) inhibited MAO-A less potently with an IC50 value of 30.1 μM. Furthermore, purpurin was a reversible and competitive inhibitor of MAO-A with a Ki value of 0.422 μM. A comparison of their chemical structures suggested the 4-hydroxy group of purpurin might play an important role in its inhibition of MAO-A. Molecular docking simulation showed that the binding affinity of purpurin for MAO-A (?40.0 kcal/mol) was higher than its affinity for MAO-B (?33.9 kcal/mol), and that Ile 207 and Gly 443 of MAO-A were key residues for hydrogen bonding with purpurin. The findings of this study suggest purpurin is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a new potential lead compound for development of novel reversible inhibitors of MAO-A (RIMAs).  相似文献   

17.
Based on our recently reported selective hMAO-A inhibitors, on which, the intramolecular cyclization led to a very interesting change of isoform selectivity. A series of selective hMAO-B inhibitors (3a3u) with novel scaffold of tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one were designed and synthesized. Compound 3u (IC50 = 221 nM) exhibited the best inhibitory activity and isoform selectivity against hMAO-B, superior to selegiline (IC50 = 321 nM), which is a commercial selective hMAO-B inhibitor used to Parkinson’s disease. Modeling study indicated that the selectivity of our compounds to hMAO-B is determined by at least two residues, i.e., Ile 199 and Cys 172 (or corresponded Phe 208 and Asn 181 of hMAO-A). These data support further studies to assess rational design of more efficiently selective hMAO-B inhibitors.  相似文献   

18.
A small molecule library of pyrido[2,3-d]pyrimidine-2,4-dione derivatives 616 was synthesized from 6-amino-1,3-disubstituted uracils 18, characterized, and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K). To understand the binding pocket of eEF-2K, structural modifications of the pyrido[2,3-d]pyrimidine were made at three regions (R1, R2, and R3). A homology model of eEF-2K was created, and compound 6 (A-484954, Abbott laboratories) was docked in the catalytic domain of eEF-2K. Compounds 6 (IC50 = 420 nM) and 9 (IC50 = 930 nM) are found to be better molecules in this preliminary series of pyrido[2,3-d]pyrimidine analogs. eEF-2K activity in MDA-MB-231 breast cancer cells is significantly reduced by compound 6, to a lesser extent by compound 9, and is unaffected by compound 12. Similar inhibitory results are observed when eEF-2K activity is stimulated by 2-deoxy-d-glucose (2-DOG) treatment, suggesting that compounds 6 and 9 are able to inhibit AMPK-mediated activation of eEF-2K to a notable extent. The results of this work will shed light on the further design and optimization of novel pyrido[2,3-d]pyrimidine analogs as eEF-2K inhibitors.  相似文献   

19.
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 2.36–9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC50 values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC50 values of 7.44–19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC50 values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC50 values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.  相似文献   

20.
A series of hydroxy substituted amino chalcone compounds have been synthesized. These compounds were then evaluated for their inhibitory activities on tyrosinase and melanogenesis in murine B16F10 melanoma cell lines. The structures of the compounds synthesized were confirmed by 1H NMR, 13C NMR, FTIR and HRMS. Two novel amino chalcone compounds exhibited higher tyrosinase inhibitory activities (IC50 values of 9.75 μM and 7.82 μM respectively) than the control kojic acid (IC50: 22.83 μM). Kinetic studies revealed them to act as competitive tyrosinase inhibitors with their Ki values of 4.82 μM and 1.89 μM respectively. Both the compounds inhibited melanin production and tyrosinase activity in B16 cells. Docking results confirm that the active inhibitors strongly interact with mushroom tyrosinase residues. This study suggests that the depigmenting effect of novel amino chalcone compounds might be attributable to inhibition of tyrosinase activity, suggesting amino chalcones to be a promising candidate for use as depigmentation agents or as anti-browning food additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号