首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary. Phenylketonuria (PKU) is an autosomal recessive genetic disease caused by the defects in the phenylalanine hydroxylase (PAH) gene. Individuals homozygous for defective PAH alleles show elevated levels of systemic phenylalanine and should be under strict dietary control to reduce the risk of neuronal damage associated with high levels of plasma phenylalanine. Researchers predict that plant phenylalanine ammonia-lyase (PAL), which converts phenylalanine to nontoxic t-cinnamic acid, will be an effective therapeutic enzyme for the treatment of PKU. The problems of this potential enzyme therapy have been the low stability in the circulation and the antigenicity of the plant enzyme. Recombinant PAL originated from parsley (Petroselinum crispum) chemically conjugated with activated PEG2 [2,4-bis(O-methoxypolyethyleneglycol)-6-chloro-s-triazine] showed greatly enhanced stability in the circulation and was effective in reducing the plasma concentration of phenylalanine in the circulation of mice. PEG-PAL conjugate will be an effective therapeutic enzyme for the treatment of PKU.  相似文献   

2.
Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. InPAHENU1,the phenotype is mild. ThePahenu1mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. InPAHENU2,the phenotype is severe. ThePahenu2mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. InPAHENU2,the sequence information was used to devise a direct genotyping system based on the creation of a newAlw26I restriction endonuclease site.  相似文献   

3.
Phenylketonuria (PKU) (OMIM 261600) is the first Mendelian disease to have an identified chemical cause of impaired cognitive development. The disease is accompanied by hyperphenylalaninemia (HPA) and elevated levels of phenylalanine metabolites (phenylacetate (PAA), phenyllactate (PLA), and phenylpyruvate (PPA)) in body fluids. Here we describe a method to determine the concentrations of PAA, PPA, and PLA in the brain of normal and mutant orthologous mice, the latter being models of human PKU and non-PKU HPA. Stable isotope dilution techniques are employed with the use of [(2)H(5)]-phenylacetic acid and [2,3, 3-(2)H(3)]-3-phenyllactic acid as internal standards. Negative ion chemical ionization (NICI)-GC/MS analyses are performed on the pentafluorobenzyl ester derivatives formed in situ in brain homogenates. Unstable PPA in the homogenate is reduced by NaB(2)H(4) to stable PLA, which is labeled with a single deuterium and discriminated from endogenous PLA in the mass spectrometer on that basis. The method demonstrates that these metabolites are easily measured in normal mouse brain and are elevated moderately in HPA mice and greatly in PKU mice. However, their concentrations are not sufficient in PKU to be "toxic"; phenylalanine itself remains the chemical candidate causing impaired cognitive development.  相似文献   

4.
Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.  相似文献   

5.
Phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are allelic disorders caused by mutations in the gene encoding phenylalanine hydroxylase (PAH). In this study, a total of 218 independent PAH chromosomes (109 unrelated patients with PKU residing in Lithuania) were investigated. All 13 exons of the PAH gene of all PKU probands were scanned for DNA alterations by denaturing gradient gel electrophoresis (DGGE). In the cases of a specific DGGE pattern recognized, mutations were identified by direct fluorescent automated sequencing or by restriction enzyme digestion analysis of relevant exons. Twenty-five different PAH gene mutations were identified in Lithuania. We estimated a connection between individual PAH locus mutations and biochemical and metabolic phenotypes in patients in whom the mutant allele acts on its own, i.e., in functionally hemizygous patients and using the assigned value (AV) method to determine the severity of both common and rare mutant alleles, as well as to check a model to predict the combined phenotypic effect of two mutant PAH alleles. The text was submitted authors English.  相似文献   

6.

Purpose

Phenylketonuria (PKU), caused by phenylalanine (phe) hydroxylase loss of function mutations, requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP), a low-phe whey protein, provides a palatable alternative to AA formula. Skeletal fragility is a poorly understood chronic complication of PKU. We sought to characterize the impact of the PKU genotype and dietary protein source on bone biomechanics.

Procedures

Wild type (WT; Pah+/+) and PKU (Pahenu2/enu2) mice on a C57BL/6J background were fed high-phe casein, low-phe AA, and low-phe GMP diets between 3 to 23 weeks of age. Following euthanasia, femur biomechanics were assessed by 3-point bending and femoral diaphyseal structure was determined. Femoral ex vivo bone mineral density (BMD) was assessed by dual-enengy x-ray absorptiometry. Whole bone parameters were used in prinicipal component analysis. Data were analyzed by 3-way ANCOVA with genotype, sex, and diet as the main factors.

Findings

Regardless of diet and sex, PKU femora were more brittle, as manifested by lower post-yield displacement, weaker, as manifested by lower energy and yield and maximal loads, and showed reduced BMD compared with WT femora. Four principal components accounted for 87% of the variance and all differed significantly by genotype. Regardless of genotype and sex, the AA diet reduced femoral cross-sectional area and consequent maximal load compared with the GMP diet.

Conclusions

Skeletal fragility, as reflected in brittle and weak femora, is an inherent feature of PKU. This PKU bone phenotype is attenuated by a GMP diet compared with an AA diet.  相似文献   

7.
Kwak SS  Suk J  Choi JH  Yang S  Kim JW  Sohn S  Chung JH  Hong YH  Lee DH  Ahn JK  Min H  Fu YM  Meadows GG  Joe CO 《Autophagy》2011,7(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr-/- mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr-/- mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr-/- mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr-/- mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.Key words: tetrahydrobiopterin, autophagy, mTORC1, tyrosine, phenylalanine, phenylketonuria, Akt, AMPK  相似文献   

8.
Phenylketonuria (PKU) is caused by a mutation in the phenylalanine (phe) hydroxylase gene and requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to AA formula. Our objective was to compare growth, body composition, and energy balance in Pah(enu2) (PKU) and wild-type mice fed low-phe GMP, low-phe AA, or high-phe casein diets from 3-23 wk of age. The 2 × 2 × 3 design included main effects of genotype, sex, and diet. Fat and lean mass were assessed by dual-energy X-ray absorptiometry, and acute energy balance was assessed by indirect calorimetry. PKU mice showed growth and lean mass similar to wild-type littermates fed the GMP or AA diets; however, they exhibited a 3-15% increase in energy expenditure, as reflected in oxygen consumption, and a 3-30% increase in food intake. The GMP diet significantly reduced energy expenditure, food intake, and plasma phe concentration in PKU mice compared with the casein diet. The high-phe casein diet or the low-phe AA diet induced metabolic stress in PKU mice, as reflected in increased energy expenditure and intake of food and water, increased renal and spleen mass, and elevated plasma cytokine concentrations consistent with systemic inflammation. The low-phe GMP diet significantly attenuated these adverse effects. Moreover, total fat mass, %body fat, and the respiratory exchange ratio (CO(2) produced/O(2) consumed) were significantly lower in PKU mice fed GMP compared with AA diets. In summary, GMP provides a physiological source of low-phe dietary protein that promotes growth and attenuates the metabolic stress induced by a high-phe casein or low-phe AA diet in PKU mice.  相似文献   

9.
Treatment with tetrahydrobiopterin (BH4) is the latest therapeutic option approved for patients with phenylketonuria (PKU)—one of the most frequent inborn metabolic diseases. PKU or phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene. Given that some PAH mutations are responsive to BH4 treatment while others are non-responsive, for every novel mutation that is discovered it is essential to confirm its pathogenic effect and to assess its responsiveness to a BH4 treatment in vitro, before the drug is administered to patients. We found a c.676C>A (p.Gln226Lys) mutation in the PAH gene in two unrelated patients with PKU. The corresponding aberrant protein has never been functionally characterized in vitro and its response to BH4 treatment is unknown. Computational analyses proposed that glutamine at position 226 is an important, evolutionary conserved amino acid while the substitution with lysine probably disturbs tertiary protein structure and impacts posttranslational PAH modifications. Using hepatoma cellular model, we demonstrated that the amount of mutant p.Gln226Lys PAH detected by Western blot was only 1.2% in comparison to wild-type PAH. The addition of sepiapterin, intracellular precursor of BH4, did not increase PAH protein yield thus marking p.Gln226Lys as BH4-non-responsive mutation. Therefore, computational, experimental, and clinical data were all in accordance showing that p.Gln226Lys is a severe pathogenic PAH mutation. Its non-responsiveness to BH4 treatment in hepatoma cellular model should be considered when deciding treatment options for PKU patients carrying this mutation. Consequently, our study will facilitate clinical genetic practice, particularly genotype-based stratification of PKU treatment.  相似文献   

10.
《Autophagy》2013,9(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr?/? mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr?/? mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr?/? mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr?/? mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.  相似文献   

11.
Phenylketonuria (PKU), the most frequent disorder of amino acid metabolism, is caused by mutations in human phenylalanine hydroxylase gene (PAH), leading to deficient enzyme activity. Previously reported but uncharacterized PAH gene mutation, p.S231F (c.692C > T), was detected in Serbian patients with classical PKU. We analyzed p.S231F PAH protein in prokaryotic (Escherichia coli) and eukaryotic expression system (hepatoma cells). In both systems the mutant enzyme was unstable. Residual enzyme activity in vitro was ~1%. Mutation p.S231F PAH was not activated by pre-incubation with phenylalanine substrate. We found no GroEL/GroES chaperone effect and slightly positive effect of the (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) on the stabilization of the protein structure. Our findings were in accordance with severe patients’ phenotypes. In conclusion, p.S231F should be classified as a functionally null PAH gene mutation as it drastically reduces stability and activity of the PAH enzyme in vitro.  相似文献   

12.
A comprehensive population and medical-genetic study was carried out in ten districts and two cities in the Karachay-Cherkess Republic (Russia). As a result, 57 patients with phenylketonuria were revealed. PAH gene genotypes for 40 probands and their diseased and healthy relatives were determined. The mutation spectrum of the PAH gene in the Karachay-Cherkess Republic was investigated. The major mutation in this region is R261X with allelic frequency of 68.4%. We elaborated a convenient system for detection of six PAH gene mutations common in the Karachay-Cherkess Republic, with the total information content of the system being 89.9%. As a result of processing the clinical data, association of the diet and phenylalanine levels in the blood was verified. Genophenotypic analysis confirms the association of the residual activity of phenylalanine hydroxylase and the severity of the disease. It is shown that common mutation R261X is severe and that patients who are homozygous for this mutation have classical phenylketonuria (PKU).  相似文献   

13.
14.
We investigated the mutation spectrum of the phenylalanine hydroxylase gene (PAH) in a cohort of patients from 135 Slovak PKU families. Mutational screening of the known coding region, including conventional intron splice sites, was performed using high-resolution melting analysis, with subsequent sequencing analysis of the samples showing deviated melting profiles compared to control samples. The PAH gene was also screened for deletions and duplications using MLPA analysis. Forty-eight different disease causing mutations were identified in our patient group, including 30 missense, 8 splicing, 7 nonsense, 2 large deletions and 1 small deletion with frameshift; giving a detection rate of 97.6%. The most prevalent mutation was the p.R408W, occurring in 47% of all alleles, which concurs with results from neighboring and other Slavic countries. Other frequent mutations were: p.R158Q (5.3%), IVS12 + 1G>A (5.3%), p.R252W (5.1%), p.R261Q (3.9%) and p.A403V (3.6%). We also identified three novel missense mutations: p.F233I, p.R270I, p.F331S and one novel variant: c.− 30A>T in the proximal part of the PAH gene promoter. A spectrum of 84 different genotypes was observed and a genotype based predictions of BH4-responsiveness were assessed. Among all genotypes, 36 were predicted to be BH4-responsive represented by 51 PKU families. In addition, genotype–phenotype correlations were performed.  相似文献   

15.
Phenylketonuria (PKU) is a metabolic disorder caused by phenylalanine hydroxylase deficiency leading to increased levels of phenylalanine in the brain. Hyperactivity is reportedly induced by a high level of orexin A, and therefore orexin A content was studied in the PKU mice. Hypothalamus and brain stem had higher levels of orexin A compared to cerebrum and cerebellum both in wild type and PKU mice brains as observed by radioimmunoassay method. Interestingly, all these regions of the brain in PKU mouse showed a higher level of orexin A compared to the wild type. Heart and plasma also had higher levels of orexin A in PKU compared to the wild type. Immunohistochemical analysis revealed an increased number of orexin A–stained cells in the brain and heart of PKU mouse compared to the wild type. This is the first report of increased level of orexin in the PKU mouse brain. Hyperactivity is commonly observed in children with PKU; thus these findings suggest that orexin A is a contributing factor for the hyperactivity.  相似文献   

16.
Summary There is a statistically significant difference in the IQ's of PKU and histidinemia parents. The difference is due entirely to the verbal part of the Hamburg-Wechsler test. There is no significant difference in performance. The heterozygous state of histidinemia does not seem to bear an intellectual (evolutionary) advantage, since the IQ's of histidinemia parents show the same distribution as a normal population. In early and mostly well-treated PKU patients, the same slight deficit in verbal IQ appears with increasing age (changing test methods). These patients, simultaneously tested at 4 years of age with the Bühler-Hetzer and Kramer tests, exhibit a statistically significant difference between the results in favor of the less verbal Bühler-Hetzer. Since heterozygots, for PKU never have elevated phenylalanine blood levels, and because tryosine deficiency as argued by others seems highly improbable, we believe that the PKU gene has a more direct action on (or in) at least certain ganglion cells, lowering the verbal IQ slightly, but significantly. This action is not reflected by phenylalanine increase in the extracellular space in heterozygots and is not abolished by dietary treatment in homozygous PKU patients. The major damage in PKU patients must be due to chronic phenylalanine poisoning, which deteriorates cells and/or functions on a much larger scale, because it can be easily prevented by decreasing the phenylalanine blood level with correct dietary treatment.  相似文献   

17.
DNA haplotype analyses of patients with hyperphenylalaninemia.   总被引:1,自引:1,他引:0       下载免费PDF全文
Linkage analysis of phenylketonurics has shown a strong association between the DNA haplotype at the phenylalanine hydroxylase (PAH) locus and phenylketonuria (PKU). Similarly, a genetic linkage between less severe forms of hyperphenylalaninemia (HPA) and the PAH locus has been suggested. In the present study we analyzed this linkage in more detail. Haplotypes at the PAH locus were determined for 19 individuals with moderately elevated plasma phenylalanine and normal urinary neopterin/biopterin ratios. Fourteen of these individuals had plasma phenylalanine levels of 4-10 mg/dl (mild HPA), and the other five had plasma phenylalanine levels of 10-19 mg/dl (atypical PKU). Thirteen of the 15 HPA families consisted of an affected child and at least one other sibling. Elevated plasma phenylalanine was seen to genetically segregate with specific PAH alleles in each family. Summation of the LOD scores for both categories of moderate plasma phenylalanine elevation gave a maximum value of 3.556 at theta = 0. At theta = 0 this gives a probability of linkage between the PAH locus and the locus for moderate phenylalanine elevations that is approximately 3,600:1. None of the alleles segregating with either mild HPA or atypical PKU were of haplotype 2 or 3, and 13/20 were of types 1 or 4. This is in agreement with the most deleterious mutations being on haplotypes 2 and 3 and with the less severe mutations being on haplotypes 1 and 4. chi 2 Analyses indicated no statistically significant correlation between HPA and a particular haplotype or restriction-enzyme site.  相似文献   

18.
The variable number of tandem repeat (VNTR) marker located at the 3′-end of the phenylalanine hydroxylase (PAH) gene, PAHVNTR marker, is commonly used in carrier detection and prenatal diagnosis of the PKU disease. During the molecular diagnosis of the disease, an artifact band associated with the PAHVTNR marker was frequently observed. Analysis of genotyping data from nine trios families indicated that in heterozygote individuals, the observed stutter (artifact) bands at PAHVNTR marker were minor bands with one repeat sequence shorter than the upper main bands. More investigations using sequencing revealed that the artifact band was associated with VNTRs including seven or higher core repeats. In statistical analysis, 75% of the studied heterozygote individuals represented PCR artifact band. The presence of the artifact band associated with PAHVNTR marker highlights a serious alarm risk of possible technical misdiagnosis in the application of the PAHVNTR marker in carrier detection and prenatal diagnosis of the PKU disease.  相似文献   

19.
Tetrahydrobiopterin (BH4) is a co-factor that enhances the activity of other enzymes, and this co-factor level is found to be affected in phenylketonuria (PKU), an amino acid metabolism disorder. The present study was aimed at understanding the effect of BH4 on mutations in the regulatory domain of phenylalanine hydroxylase (PAH). Among 14 patients, 5 patients were classical PKU, 3 were atypical PKU, and 6 were mild PKU. All of these patients had at least one mutation in the regulatory domain. Patients were given 10 mg/kg BH4, and the response of blood phenylalanine (Phe) levels was monitored following treatment. The level of blood Phe decreased after BH4 treatment in all of the patients. These studies suggest that mutations in the regulatory domain also responded to BH4 even if the patient had classical PKU.  相似文献   

20.
Variation in the inhibition of growth of Escherichia coli and Shigella sp. in various media containing beta-2-thienylalanine was attributed to differences in concentrations of Mg++ ions. Random blood samples 112 infants were tested for elevated phenylalanine in the phenylketonuria (PKU) screening assay. Magnesium ion levels also affected the results of this assay. At 0.05 g/1 MgSO4, the concentration present in commerical PKU test agar, four false positives were detected, while no readings could be made due to overgrowth of the Bacillus subtilis test strain when the concentration was increased to 0.1 g/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号