首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.  相似文献   

2.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

3.
Galat A  Gross G  Drevet P  Sato A  Ménez A 《The FEBS journal》2008,275(12):3207-3225
The three-dimensional structures of some components of snake venoms forming so-called 'three-fingered protein' domains (TFPDs) are similar to those of the ectodomains of activin, bone morphogenetic protein and transforming growth factor-beta receptors, and to a variety of proteins encoded by the Ly6 and Plaur genes. The analysis of sequences of diverse snake toxins, various ectodomains of the receptors that bind activin and other cytokines, and numerous gene products encoded by the Ly6 and Plaur families of genes has revealed that they differ considerably from each other. The sequences of TFPDs may consist of up to six disulfide bonds, three of which have the same highly conserved topology. These three disulfide bridges and an asparagine residue in the C-terminal part of TFPDs are essential for the TFPD-like fold. Analyses of the three-dimensional structures of diverse TFPDs have revealed that the three highly conserved disulfides impose a major stabilizing contribution to the TFPD-like fold, in both TFPDs contained in some snake venoms and ectodomains of several cellular receptors, whereas the three remaining disulfide bonds impose specific geometrical constraints in the three fingers of some TFPDs.  相似文献   

4.
Relationship between Human α-Galactosidase Isozymes   总被引:2,自引:0,他引:2  
THE amino-acid sequences of venom neurotoxins from eighteen species of snake have been determined1–10. They have been isolated from the venoms of twelve races of Elapidae and Hydrophiidae families of the Proteroglyphae suborder. Sequences and toxicity tests show them to be homologous both sequentially and functionally and to have a common ancestor11. We point out here some data on toxicity and abundance of the toxins which reveal in a more quantitative sense how a biochemical environment exerts its selection pressure on homologous molecules of-differing activities.  相似文献   

5.
Unfolding stabilities of two homologous proteins, cardiotoxin III and short-neurotoxin (SNTX) belonging to three-finger toxin (TFT) superfamily, have been probed by means of molecular dynamics (MD) simulations. Combined analysis of data obtained from steered MD and all-atom MD simulations at various temperatures in near physiological conditions on the proteins suggested that overall structural stabilities of the two proteins were different from each other and the MD results are consistent with experimental data of the proteins reported in the literature. Rationalization for the differential structural stabilities of the structurally similar proteins has been chiefly attributed to the differences in the structural contacts between C- and N-termini regions in their three-dimensional structures, and the findings endorse the ‘CN network’ hypothesis proposed to qualitatively analyse the thermodynamic stabilities of proteins belonging to TFT superfamily of snake venoms. Moreover, the ‘CN network’ hypothesis has been revisited and the present study suggested that ‘CN network’ should be accounted in terms of ‘structural contacts’ and ‘structural strengths’ in order to precisely describe order of structural stabilities of TFTs.  相似文献   

6.
Over the last several decades, research on snake venom toxins has provided not only new tools to decipher molecular details of various physiological processes, but also inspiration to design and develop a number of therapeutic agents. Blood circulation, particularly thrombosis and haemostasis, is one of the major targets of several snake venom proteins. Among them, anticoagulant proteins have contributed to our understanding of molecular mechanisms of blood coagulation and have provided potential new leads for the development of drugs to treat or to prevent unwanted clot formation. Some of these anticoagulants exhibit various enzymatic activities whereas others do not. They interfere in normal blood coagulation by different mechanisms. Although significant progress has been made in understanding the structure-function relationships and the mechanisms of some of these anticoagulants, there are still a number of questions to be answered as more new anticoagulants are being discovered. Such studies contribute to our fight against unwanted clot formation, which leads to death and debilitation in cardiac arrest and stroke in patients with cardiovascular and cerebrovascular diseases, arteriosclerosis and hypertension. This review describes the details of the structure, mechanism and structure-function relationships of anticoagulant proteins from snake venoms.  相似文献   

7.
The protein composition of the crude venoms of the three most important vipers of Tunisia was analyzed by RP-HPLC, N-terminal sequence analysis, MALDI-TOF mass determination, and in-gel tryptic digestion followed by PMF and CID-MS/MS of selected peptide ions in a quadrupole-linear IT instrument. Our results show that the venom proteomes of Cerastes cerastes, Cerastes vipera, and Macrovipera lebetina are composed of proteins belonging to a few protein families. However, each venom showed distinct degree of protein composition complexity. The three venoms shared a number of protein classes though the relative occurrence of these toxins was different in each snake species. On the other hand, the venoms of the Cerastes species and Macrovipera lebetina each contained unique components. The comparative proteomic analysis of Tunisian snake venoms provides a comprehensible catalogue of secreted proteins, which may contribute to a deeper understanding of the biological effects of the venoms, and may also serve as a starting point for studying structure-function correlations of individual toxins.  相似文献   

8.
9.
This work describes classification, functions, location, inhibition, activation, and therapeutic applications of proteases from snake venoms and vegetables. Snake venoms and vegetables can present toxins that unchain necrosis or proteolysis due to the direct cytotoxic action of venom proteases. These proteases are potential tools in the development of drugs for the prevention and treatment of several illnesses. We report herein mainly fibrinogenolytic metallo proteases and serine proteases (“thrombin-like”). These enzymes are extensively used in the treatment and prevention of thrombotic disorders, since they serve as defibrinogenating agents. The therapeutic uses of fibrin(ogen)olytic metallo proteases hold promise for clinical application due to potential in reversing the effects of thrombosis; this has been shown to be an alternative approach to the prevention and treatment of cardiovascular disorders, which are among the most prominent causes of mortality around the world. Plant proteases can be utilized for many cellular and molecular activities, in antibacterial and anticancer therapies, and in the treatment of snakebites, inhibiting snake venom activities such as blood-clotting, defibrinogenation, and fibrin(ogen)olytic and hemorrhagic actions. These toxins also display potential for clinical use in the treatment of hemostatic disorders.  相似文献   

10.
Snake venoms contain a vast array of toxic polypeptide components interacting with a variety of cell targets. Thus, Elapidae snake venoms contain α-neurotoxins with very high affinity for nicotinic acetylcholine receptors (nAChRs) and a few toxins able to suppress the activity of Ca2+ and K+ channels. Experimental evidence for the presence of nAChR antagonists and voltage-gated ionic channel blockers in venoms of Viperidae snakes is very scarce. In this study, effects of crude venoms of seven snake species (Vipera nikolskii, Echis multisquamatus, Gloydius saxatilis, Bitis arietans, Vipera renardi, Vipera lebetina, and Naja kaouthia) on nAChRs and voltage-gated Ca2+ channels were studied for the first time. The experiments were carried out on isolated identified neurons of the fresh-water mollusc Lymnaea stagnalis using voltage-clamp and intracellular perfusion techniques. All Viperidae snake venoms under study blocked nAChRs and voltage-gated Ca2+ channels. The potency of these venoms against nAChRs was significantly lower in comparison with N. kaouthia venom which is rich of α-neurotoxins; however, the extent of Ca2+ channel block by venoms of Viperidae snakes and N. kaouthia was similar. The data obtained suggest that Viperidae snake venoms tested in this study contain peptides with affinity both for nAChRs and for voltage-gated Ca2+ channels.  相似文献   

11.
Animal toxins which interact on various receptors and channels have been often used in the studies of the functional roles of these targets. Nicotinic toxins have been purified from snake and cone venoms and are characterized by high affinity and various selectivity of interactions on the different nicotinic receptors subtypes. Since 30 years they have been used as molecular probes to identify, localize and purify these receptors. Furthermore, they have played a crucial role in the better understanding of their functional properties and have been useful in their structural studies. These peptidic toxins could be chemically synthetized or recombinantly expressed and nonnatural residues could be introduced in their sequences in order to delineate their functional interaction sites. The structural modelisation of toxin-nAChR interaction allows us to understand the antagonistic property of these toxins and open the way to the design of engineered ligands with predetermined specificity, useful as pharmacological tools or therapeutic agents in the numerous diseases involving this receptor family.  相似文献   

12.
A new three-finger toxin nakoroxin was isolated from the cobra Naja kaouthia venom, and its complete amino acid sequence was established. Nakoroxin belongs to the group of “orphan” toxins, data on the biological activity of which are practically absent. Nakoroxin shows no cytotoxicity and does not inhibit the binding of α-bungarotoxin to nicotinic acetylcholine receptors of muscle and α7 types. However, it potentiates the binding of α-bungarotoxin to the acetylcholine-binding protein from Lymnaea stagnalis. This is the first toxin with such an unusual property.  相似文献   

13.
Snake venoms contain a variety of protein and peptide toxins, and the three-finger toxins (3FTxs) are among the best characterized family of venom proteins. The compact nature and highly conserved molecular fold of 3FTxs, together with their abundance in many venoms, has contributed to their utility in structure-function studies. Although many target the nicotinic acetylcholine receptor of vertebrate skeletal muscle, often binding with nanomolar Kds, several non-conventional 3FTxs show pronounced taxon-specific neurotoxic effects. Here we describe the purification and characterization of fulgimotoxin, a monomeric 3FTx from the venom of Oxybelis fulgidus, a neotropical rear-fanged snake. Fulgimotoxin retains the canonical 5 disulfides of the non-conventional 3FTxs and is highly neurotoxic to lizards; however, mice are unaffected, demonstrating that this toxin is taxon-specific in its effects. Analysis of structural features of fulgimotoxin and other colubrid venom 3FTxs indicate the presence of a “colubrid toxin motif” (CYTLY) and a second conserved segment (WAVK) found in Boiga and Oxybelis taxon-specific 3FTxs, both in loop II. Because specific residues in loop II conventional α-neurotoxic 3FTxs are intimately associated with receptor binding, we hypothesize that this loop, with its highly conserved substitutions, confers taxon-specific neurotoxicity. These findings underscore the importance of rear-fanged snake venoms for understanding the evolution of toxin molecules and demonstrate that even among well-characterized toxin families, novel structural and functional motifs may be found.  相似文献   

14.
15.
1. The enzymatic, hemorrhagic, procoagulant and anticoagulant activities of venoms of some animals including snakes, lizards, toads, scorpions, spider, wasps, bees and ants were compared.2. Snake venom was the richest source of enzymes among the animal venoms. Most other animal venoms were devoid of phosphodiesterase, l-amino acid oxidase, alkaline phosphomonoesterase and acetylcholinesterase activities and only a few exhibited arginine ester hydrolase activity. These venoms, however, exhibited wide ranges of protease, 5'-nucleotidase and hyaluronidase activities. Most of the animal venoms examined exhibited some phospholipase A activity.3. Other than snake venoms, only venoms of the toad Bufo calamita and the lizards were hemorrhagic, and only venoms of the social wasps, social bees and harvester ant exhibited strong anticoagulant activity. Procoagulant activity occurs only in snake venoms.  相似文献   

16.
Three-finger toxins (3FTXs), especially α-neurotoxins, are the most poorly neutralized elapid snake toxins by current antivenoms. In this work, the conserved structural similarity and motif arrangements of long-chain α-neurotoxins led us to design peptides with consensus sequences. Eight long-chain α-neurotoxins (also known as Type II) were used to generate a consensus sequence from which two peptides were chemically synthesized, LCP1 and LCP2. Rabbit sera raised against them were able to generate partially-neutralizing antibodies, which delayed mice mortality in neutralization assays against Naja haje, Dendrospis polylepis and Ophiophagus hannah venoms.  相似文献   

17.
It has been found that the lethal action of elapid snake venoms to arthropods (fly larvae and isopods) is due to proteic factors differing from the toxins which are strongly and specifically active on mammals.This conclusion was based on the following: (1) Lack of any correlation between the toxic activity on larvae, isopods, and mice of ten elapid snake venoms. (2) Absence of any toxicity to arthropods in pure toxins isolated and purified from several elapid snake venoms according to their lethality. (3) Electrophoretical separation of the venom of the snake Naja mossambica mossambica (= N. nigricollis mossambica) resulted in fractions active either to arthropods and/or to mice. (4) Separation of the above venom by gel filtration on Sephadex G-50 enabled the isolation of fractions highly toxic to arthropods. (5) The above fractions demonstrated a high phospholipase activity corresponding to about 80 per cent of the total activity of the whole venom. The link between phospholipase and toxicity to arthropods will serve as a target for further investigation.It appears that the phenomenon of diversity in toxic activities of different proteins to different groups of organism, as previously demonstrated in scorpion venoms, is equally shared by elapid snake venoms.  相似文献   

18.
A comparative study of the biological properties of some sea snake venoms.   总被引:3,自引:0,他引:3  
1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.  相似文献   

19.
20.
Snake venoms are relevant sources of toxins that have evolved towards the engineering of highly active compounds. In the last years, research efforts have produced great advance in their understanding and uses. Metalloproteases with disintegrin domains are among the most abundant toxins in many Viperidae snake venoms. This review will focus on the structure, function and possible applications of the metalloprotease and disintegrin domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号