首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heat shock proteins of chicken lens   总被引:12,自引:0,他引:12  
The presence of heat shock proteins HSP-40, HSP-70, and HSc-70 in adult and embryonic chicken lenses were determined. The epithelium, cortex, and nucleus of adult chicken lens were separated and tested for the presence of heat shock proteins (hsps) by western blot, using specific antibodies for HSP-40, HSP-70, and HSc-70. Water soluble (WSF) and water insoluble fractions (WIF) of embryonic chicken lenses were isolated and tested for the presence of HSP-40, HSP-70, and HSc-70 by immunoblot. Embryonic chicken lens sections were also analyzed for the presence of heat shock proteins by immunofluorescence technique. Data obtained from these experiments revealed that HSP-40, HSP-70, and HSc-70 are present in all areas of both adult and embryonic chicken lens. Presence of hsps protein in the deep cortex and nucleus is intriguing as no detectable metabolic activities are reported in this area. However it can be proposed that hsps HSP-40, HSP-70, and HSc-70 can interact with protein of these areas and protect them from stress induced denaturation.  相似文献   

3.
4.
Heat shock proteins of adult and embryonic human ocular lenses.   总被引:11,自引:0,他引:11  
We investigated the presence and distribution of heat shock proteins, HSP-70 [Horwitz, J. 1992. Proc Natl Acad Sci 89:10449-10453], HSP-40, HSc-70, HSP-27, and alphabeta-crystallin in different regions of adult and fetal human lenses and in aging human lens epithelial cells. This study was undertaken because heat shock proteins may play an important role in the maintenance of the supramolecular organization of the lens proteins. Human adult and fetal lenses were dissected to separate the epithelium, superficial cortex, intermediate cortex, and nucleus. The water soluble and insoluble protein fractions were separated by SDS-PAGE, and transferred to nitrocellulose paper. Specific antibodies were used to identify the presence of heat shock proteins in distinct regions of the lens. HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 immunoreactivity was mainly detected in the epithelium and superficial cortical fiber cells of the adult human lens. The small heat shock proteins, HSP-27 and alphabeta-crystallin were found in all regions of the lens. Fetal human lenses showed immunoreactivity to all heat shock proteins. An aging study revealed a decrease in heat shock protein levels, except for HSP-27. The presence of HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 in the epithelium and superficial cortical fiber cells imply a regional cell specific function, whereas the decrease of heat shock protein with age could be responsible for the loss of optimal protein organization, and the eventual appearance of age-related cataract.  相似文献   

5.
Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1–/–) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1–/– cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1–/– cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation. knockout cells; amino acid; heat stress mechanism  相似文献   

6.
7.
HSPs (heat shock proteins) have been recognized to maintain cellular homoeostasis during changes in microenvironment. The present study aimed to investigate the HSPs expression pattern in hierarchical neural differentiation stages from mouse embryonal carcinoma stem cells (P19) and its role in heat stressed exposed cells. For induction of HSPs, cells were heated at 42°C for 30 min and recovered at 37°C in different time points. For neural differentiation, EBs (embryoid bodies) were formed by plating P19 cells in bacterial dishes in the presence of 1 mM RA (retinoic acid) and 5% FBS (fetal bovine serum). Then, on the sixth day, EBs were trypsinized and plated in differentiation medium containing neurobasal medium, B27, N2 and 5% FBS and for an extra 4 days. The expression of HSPs and neural cell markers were evaluated by Western blot, flow cytometry and immunocytochemistry in different stages. Our results indicate that HSC (heat shock constant)70 and HSP60 expressions decreased following RA treatment, EB formation and in mature neural cells derived from heat-stressed single cells and not heat-treated EBs. While the level of HSP90 increased six times following maturation process, HSP25 was expressed constantly during neural differentiation; however, its level was enhanced with heat stress. Accordingly, heat shock 12 h before the initiation of differentiation did not affect the expression of neuroectodermal and neural markers, nestin and β-tubulin III, respectively. However, both markers increased when heat shock was induced after treatment and when EBs were formed. In conclusion, our results raise the possibility that HSPs could regulate cell differentiation and proliferation under both physiological and pathological conditions.  相似文献   

8.
The HSPs (heat‐shock proteins) of the 70‐kDa family, the constitutively expressed HSC70 (cognate 70‐kDa heat‐shock protein) and the stress‐inducible HSP70 (stress‐inducible 70‐kDa heat‐shock protein), have been reported to be actively secreted by various cell types. The mechanisms of the release of these HSPs are obscure, since they possess no consensus secretory signal sequence. We showed that baby hamster kidney (BHK‐21) cells released HSP70 and HSC70 in a serum‐free medium and that this process was the result of an active secretion of HSPs rather than the non‐specific release of the proteins due to cell death. It was found that the secretion of HSP70 and HSC70 is independent of de novo protein synthesis. BFA (Brefeldin A) did not inhibit the basal secretion of HSPs, indicating that the secretion of HSP70 and HSC70 from cells occurs by a non‐classical pathway. Exosomes did not contribute to the secretion of HSP70 and HSC70 by cells. MBC (methyl‐β‐cyclodextrin), a substance that disrupts the lipid raft organization, considerably reduced the secretion of both HSPs, indicating that lipid rafts are involved in the secretion of HSP70 and HSC70 by BHK‐21 cells. The results suggest that HSP70 and HSC70 are actively secreted by BHK‐21 cells in a serum‐free medium through a non‐classical pathway in which lipid rafts play an important role.  相似文献   

9.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

10.
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-κB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-κB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-κB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.  相似文献   

11.
12.
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-κB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-κB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-κB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.  相似文献   

13.
Thermotolerance in cultures of Chlorella zofingiensis was induced by heat shock treatment at supraoptimal temperatures (40and 45 °C for 30 min). Thermotolerance was assayed by two methods: the survival of the cells at 70 °C and the growth of diluted cultures at 35 and 45 °C. A culture without heat shock treatment was unable to grow at 45 °C. According to eletrophoretic analyses, the synthesis of proteins of 95, 73, 60, 43 and 27 kDa was induced by heat shock treatment. The large molecular weight proteins (95, 73, 60 and43 kDa) were present in non-heat treated cells, but the heat shock treatment increased their quantity in cells. The synthesis of a low molecular weight protein (27 kDa) was induced by heat shock treatment. The induced thermotolerance could be inhibited by the presence of an 80S ribosomal translation inhibitor, cycloheximide(CHI). The first 12 amino acid residues from the N-terminus of the27 kDa heat shock induced protein are Val-Glu-Trp-Try-Gly-Pro-Asn-Arg-Ala-Lys-Phe-Leu. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The direct correlation between levels of heat shock protein expression and efficiency of its tissue protection function motivates this study of how thermal doses can be used for an optimal stress protocol design. Heat shock protein 70 (HSP70) expression kinetics were visualized continuously in cultured bovine aortic endothelial cells (BAECs) on a microscope heating stage using green fluorescent protein (GFP) as a reporter. BAECs were transfected with a DNA vector, HSP(p)-HSP70-GFP which expresses an HSP70-GFP fusion protein under control of the HSP70 promoter. Expression levels were validated by western blot analysis. Transfected cells were heated on a controlled temperature microscope stage at 42 degrees C for a defined period, then shifted to 37 degrees C for varied post-heating times. The expression of HSP70-GFP and its sub-cellular localization were visualized via fluorescence microscopy. The progressive expression kinetics were measured by quantitative analysis of serial fluorescence images captured during heating protocols from 1 to 2 h and post-heating times from 0 to 20 h. The results show two sequential peaks in HSP70 expression at approximately 3 and 12 h post-heat shock. A progressive translocation of HSP70 from the cytoplasm to the nucleus was observed from 6 to 16 h. We conclude that we have successfully combined molecular cloning and optical imaging to study HSP70 expression kinetics. The kinetic profile for HSP70-GFP fusion protein is consistent with the endogenous HSP70. Furthermore, information on dynamic intracellular translocation of HSP70 was extracted from the same experimental data.  相似文献   

15.
To elucidate the induction mechanism of HSP70 by geranylgeranylacetone (GGA), we investigated GGA specific binding proteins using a GGA-affinity column. Alteration of chaperone activity of HSP70 and binding affinity of HSP70 to heat shock factor-1 (HSF-1) was evaluated in the presence or absence of GGA. The binding domain of HSP70 to GGA was also analyzed. A 70-kDa protein eluted by 10 mM GGA from the GGA-affinity column was identical to constitutively expressed HSP70 on immunoblotting. GGA-binding domain of HSP70 was C-terminal of the protein as peptide-binding domain (HSP70C). The chaperone activity of HSP70 and recombinant HSP70C was suppressed by GGA. Furthermore, dissociation of the HSP70 from HSF-1 was observed in the presence of GGA. GGA preferentially binds to the C-terminal of HSP70 which binds to HSF-1. After dissociation of HSP70, free HSF-1 could acquire the ability to bind to HSE (the promoter region of HSP70) gene.  相似文献   

16.
17.
All living systems respond to a variety of stress conditions by inducing the synthesis of stress or heat shock proteins (HSPs), which transiently protect cells. HSP synthesis was preceded by an increase in intracellular free calcium concentration [(Ca(2+))i]. In this study, we show that Ca(2+) ionophore, ionomycin, induced an immediate increase in intracellular free Ca(2+) and examined how this increase affects heat shock response in rat hepatoma cell line H4II-E-C3. Results indicate that incubating H4II-E-C3 cells with 0.3 microM ionomycin at 37 degrees C for 15 min results in the induction of HSP 70 in both Ca(2+)-containing and Ca(2+)-free medium. Associated with this increase in free Ca(2+) is an in vivo change in membrane organization and activation of signaling molecules like ERKS and SAPKs/JNK. In Ca(2+) containing medium HSP 70 induction mediated by HSF-HSE interaction was faster upon ionomycin treatment as compared to heat shock. Our results show that ionomycin, at sub lethal concentration, increases intracellular free Ca(2+) concentration, activates SAPK/JNK and HSF-HSE interaction, and induces HSP 70 synthesis.  相似文献   

18.
There are few factors more important to the mechanisms of evolution than stress. The stress response has formed as a result of natural selection, improving the capacity of organisms to withstand situations that require action. The ubiquity of the cellular stress response suggests that effective mechanisms to counteract stress emerged early in the history of life, and their commonality proves how vital such mechanisms are to operative evolution. The cellular stress response (CSR) has been identified as a characteristic of cells in all three domains of life and consists of a core 44 proteins that are structurally highly conserved and that have been termed the ‘minimal stress proteome’ (MSP). Within the MSP, the most intensely researched proteins are a family of heat‐shock proteins known as HSP70. Superficially, correlations between the induction of stress and HSP70 differential expression support the use of HSP70 expression as a nonspecific biomarker of stress. However, we argue that too often authors have failed to question exactly what HSP70 differential expression signifies. Herein, we argue that HSP70 up‐regulation in response to stressors has been shown to be far more complex than the commonly accepted quasi‐linear relationship. In addition, in many instances, the uncertain identity and function of heat‐shock proteins and heat‐shock cognates has led to difficulties in interpretation of reports of inducible heat‐shock proteins and constitutive heat‐shock cognates. We caution against the broad application of HSP70 as a biomarker of stress in isolation and conclude that the application of HSP70 as a meaningful index of stress requires a higher degree of validation than the majority of research currently undertakes.  相似文献   

19.
The exposure of human fibroblasts (HF) aging in vitro to heat shock resulted in an attenuated expression of the heat shock-inducible HSP70. When late passage cells were cultured in the continuous presence of serum, we observed a reduced accumulation of the cytoplasmic polyadenylated HSP70 mRNA. The levels of HSF1 activation and nuclear HSP70 mRNA were comparable to those of early passage cells (M. A. Bonelli et al., Exp. Cell Res. 252, 20-32, 1999). When late passage cells were serum-starved overnight, we observed a reduced activation of HSF1 and a decreased level of HSP70 mRNA during heat shock. However, at 37 degrees C the levels of HSF1 differed little between late passage HF and early passage cells, irrespective of the presence of serum. Interestingly, during heat shock a marked decrease in the level and, consequently, in the binding activity of HSF1 was noted only in serum-starved, late passage HF. The decrease in the level of HSF1 was counteracted by back addition of serum to the cells during heat shock. Addition of the specific proteasome inhibitor MG132 blocked a decrease in HSF1 during heat shock, maintaining levels observed in late passage cells and HSF1 activity comparable to that of early passage HF. The recovery of the level and activity of HSF1 observed in late passage HF incubated in the presence of MG132 suggests that heat shock unmasks a latent proteasome activity responsible for HSF1 degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号