首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of ions and sucrose in the vacuolar sap of Chara canescens growing in an oligohaline lake (1.5 ‰) were estimated over the main growth period of the plants. During fructification vacuolar sap contained a mean of 41 mol m?3 (range 10.2–61.8) sucrose. The mean turgor pressure was 239 mosmol kg?1 (range 219–264). In long- and short-term experiments these plants were subjected to increasing salinities up to 22 ‰. When salinity was increased from 1.5 to 4.4 ‰ turgor pressure was restored to only 80 % of the initial value. This reduced level of turgor pressure was maintained up to a salinity of 22 ‰. The increase in vacuolar osmotic potential was due to the monovalent ions Na+, K+ and Cl?. The relative amounts of Na+ and K+ participating in the regulation process were dependent on external salinity. The regulatory mechanisms observed in the brackish water species Ch. canescens are compared with those reported from freshwater and euryhaline species.  相似文献   

2.
In the giant-celled marine algae Valonia utricularis the turgor-sensing mechanism of the plasmalemma and the role of the tonoplast in turgor regulation is unknown because of the lack of solid data about the individual electrical properties of the plasmalemma and the vacuolar membrane. For this reason, a vacuolar perfusion technique was developed that allowed controlled manipulation of the vacuolar sap under turgescent conditions (up to about 0.3 MPa). Charge-pulse relaxation studies on vacuolarly perfused cells at different turgor pressure values showed that the area-specific resistance of the total membrane barrier (tonoplast and plasmalemma) exhibited a similar dependence on turgor pressure as reported in the literature for nonperfused cells: the resistance assumed a minimum value at the physiological turgor pressure of about 0.1 MPa. The agreement of the data suggested that the perfusion process did not alter the transport properties of the membrane barrier. Addition of 16 μm of the H+-carrier FCCP (carbonylcyanide p-trifluoromethoxyphenyhydrazone) to the perfusion solution resulted in a drop of the total membrane potential from +4 mV to −22 mV and in an increase of the area-specific membrane resistance from 6.8 × 10−2 to 40.6 × 10−2Ωm2. The time constants of the two exponentials of the charge pulse relaxation spectrum increased significantly. These results are inconsistent with the assumption of a high-conductance state of the tonoplast (R. Lainson and C.P. Field, J. Membrane Biol. 29:81–94, 1976). Depending on the site of addition, the pore-forming antibiotics nystatin and amphotericin B affected either the time constant of the fast or of the slow relaxation (provided that the composition of the perfusion solution and the artificial sea water were replaced by a cytoplasma-analogous medium). When 50 μm of the antibiotics were added externally, the fast relaxation process disappeared. Contrastingly, the slow relaxation process disappeared upon vacuolar addition. The antibiotics cannot penetrate biomembranes rapidly, and therefore, the findings suggested that the fast and slow relaxations originated exclusively from the electrical properties of the plasmalemma and the tonoplast respectively. This interpretation implies that the area-specific resistance of the tonoplast is significantly larger than that of the plasmalemma (consistent with the FCCP data) and that the area-specific capacitance of the tonoplast is unusually high (6.21 × 10−2 Fm−2 compared to 0.77 × 10−2 Fm−2 of the plasmalemma). Thus, we have to assume that the vacuolar membrane of V. utricularis is highly folded (by a factor of about 9 in relation to the geometric area) and/or contains a fairly high concentration of mobile charges of an unknown electrogenic ion carrier system. Received: 22 October 1996/Revised: 16 January 1997  相似文献   

3.
Summary The marine algaValonia macrophysa an inhabitant of shallow subtropical waters, is subjected to sudden dilutions of external seawater during rain showers. This study describes the mechanisms involved in turgor pressure regulation following acute hyposmotic shock. Turgor regulation is 88% effective and complete within 4 hr following hyposmotic shocks of up to –10 bar. Loss of vacuolar K+, Na+ and Cl accounts for the decrease in vacuolar osmotic pressure associated with turgor regulation. A novel mechanism of turgor regulation is exhibited byValonia macrophysa given hyposmotic shocks greater than about –4 bar. Such an osmotic shock causes cell wall tension to increase above a critical value of about 6×105 dyne/cm, whereupon the protoplasm ruptures and the cell wall stretches irreversibly at a localized site. The protoplasm rupture is suggested by (1) a large abrupt increase in K+ efflux (as measured by86Rb+), (2) a rapid decrease in turgor pressure as measured with a pressure probe, and (3) sudden depolarization of the vacuole potential. Evidence for an increase in cell wall permeability includes efflux from the vacuole of dextran (mol wt 70,000), which normally has a very low cell wall permeability, and scanning electron micrographs which show a trabeculated scar area in the cell wall. This mechanism of turgor regulation is physiologically important because 98% of the cells regained normal growth rate and turgor following acute osmotic shock.  相似文献   

4.
Segmental analysis of the laminar pulvinus of Phaseolus vulgaris L. showed that its phototropic curvature is accompanied by efflux of inorganic ions and water from its contracting sector and a comparable influx into its expanding one. All the major ions, except Na+, contributed to this transport, suggesting that the response to light involves changes in the driving force, or conductivity of a wide range of solutes. During the curvature, K+ and CI? made the greatest and equivalent contributions to efflux, but only Cl? exhibited a matching influx into the expanding sector, while K+ influx was much less. Use of the cell pressure probe showed that, as the laminar angle of elevation changed between ?40° to +40°, turgor pressure in the expanding motor cells increased by 0.48 MPa and decreased in the contracting cells by 0.32 MPa. Picoliter osmometry of single-cell samples showed that during this movement vacuolar osmotic pressure remained constant. Thus, changes in turgor pressure resulted from changes in apoplastic, rather than the protoplastic osmotic pressure. Volumetric modulus of elasticity of pulvinar motor cells is very low, showing that their walls are very elastic. These properties increase the effectiveness of converting osmotic work into the large-scale, reversible volume changes responsible for leaf movements.  相似文献   

5.
Internodal cells of a brackish water charophyte,Lamprothamnium succinctum (A. Br. in Ash.) R.D.W. regulate the turgor pressure in response to changes in both the cellular and the external osmotic pressures. During turgor regulation upon hypotonic treatment, net effluxes of K+ and Cl from the vacuole, membrane depolarization, a transient increase in the electrical membrane conductance and a transient increase in concentration of cytoplasmic Ca2+ are induced. Activation of the plasmalemma Ca2+ channels and the Ca2+-controlled passive effluxes of K+ and Cl through the plasmalemma ion channels are postulated.  相似文献   

6.
The growing cells of hydroponic maize roots expand at constant turgor pressure (0.48 MPa) both when grown in low-(0.5 mol m-3 CaCl2) or full-nutrient (Hoagland's) solution and also when seedlings are stressed osmotically (0.96 MPa mannitol). Cell osmotic pressure decreases by 0.1–0.2 MPa during expansion. Despite this, total solute influx largely matches the continuously-varying volume expansion-rate of each cell. K+ in the non-osmotically stressed roots is a significant exception-its concentration dropping by 50% regardless of the presence or absence of K+ in the nutrient medium. This corresponds to the drop in osmotic pressure. Nitrate appears to replace Cl- in the Hoagland-grown cells.Analogous insensitivity of solute gradients to external solutes is observed in the radial distribution of water and solutes in the cortex 12 mm from the tip. Uniform turgor and osmotic pressures are accompanied by opposite gradients of K+ and Cl-, outwards, and hexoses and amino acids, inwards, for plants grown in either 0.5 mol m-3 CaCl2 or Hoagland's solution (with negligible Cl-). K+ and Cl- levels within both gradients were slightly higher when the ions were available in the medium. The gradients themselves are independent of the direction of solute supply. In CaCl2 solution all other nutrients must come from the stele, in Hoagland's solution inorganic solutes are available in the medium.24 h after osmotic stress, turgor pressure is recovered at all points in each gradient by osmotic adjustment using organic solutes. Remarkably, K+ and Cl- levels hardly change, despite their ready availability. Hexoses are responsible for some 50% of the adjustment with mannitol for a further 30%. Some 20% of the final osmotic pressure remains to be accounted for. Proline and sucrose are not significantly involved. Under all conditions a standing water potential step of 0.2 MPa between the rhizodermis and its hydroponic medium was found. We suggest that this is due to solute leakage.Abbreviations EDX energy dispersive X-ray microanalysis - water potential - 11-1 cell osmotic pressure - P turgor pressure  相似文献   

7.
Summary. The ultrastructure of the several micrometers thick cytoplasmic layer of the giant marine alga Valonia utricularis displays characteristics which are apparently linked with the capability of this alga to regulate turgor pressure. Transmission and scanning electron microscopy of cells prefixed in different ways, including a protocol that allows prefixation of the alga in a turgescent state, revealed a highly dendritic network of cytoplasmic strands connecting and enveloping the chloroplasts and the nuclei. Innumerable vacuolar entities are embedded in the network, giving the cytoplasm a spongy appearance. Vacuolar perfusion of turgor-pressure-clamped cells with prefixation solution containing tannic acid presented evidence that these vacuolar entities together with the huge central vacuole form a large unstirred continuum. In contrast to the tonoplast, the plasmalemma followed smoothly the lining of the cell wall, even at the numerous cell wall ingrowths. Sucrose, but not polyethylene glycol 6000, induced chloroplast clustering. Acute hypoosmotic treatment (established by reduction of external NaCl or by replacement of part of the external NaCl by equivalent osmotic concentrations of sucrose or polyethylene glycol 6000) resulted in a local relocation of the chloroplasts and cytoplasm towards the central vacuole. This effect did not occur when the relatively low reflection coefficients of these two osmolytes were taken into account. The increase in spacing between the spongy cytoplasm and the plasmalemma by chloroplast relocation (viewed by confocal laser scanning microscopy) was associated with a speckled appearance of the affected surface area under the light microscope. As indicated by electron microscopy, hypoosmotically induced chloroplast relocation resulted from disproportionate swelling of the vacuolar entities located close to the plasmalemma. The cytoskeleton in the cytoplasm and the mucopolysaccharide network in the central vacuole apparently resisted swelling of these compartments. This finding has the important consequence that relevant hydrostatic pressure gradients can be built up throughout the entire multifolded vacuolar space. This gradient could represent the trigger for turgor pressure regulation which is manifested electrically first in the tonoplast.Correspondence and reprints: Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, 97074 Würzburg, Federal Republic of Germany.  相似文献   

8.
Exposure of the giant marine alga Valonia utricularis to acute hypo-osmotic shocks induces a transient increase in turgor pressure and subsequent back-regulation. Separate recording of the electrical properties of tonoplast and plasmalemma together with turgor pressure was performed by using a vacuolar perfusion assembly. Hypo-osmotic turgor pressure regulation was inhibited by external addition of 300 microM of the membrane-permeable ion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). In the presence of 100 microM NPPB, regulation could only be inhibited by simultaneous external addition of 200 microM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a membrane-impermeable inhibitor of Cl(-) transport. At concentrations of about 100 microM, NPPB seems to selectively inhibit Cl(-) transporters in the tonoplast and K(+) transporters in the plasmalemma, whereas 300 microM NPPB inhibits K(+) and Cl(-) transporters in both membranes. Evidence was achieved by measuring the tonoplast and plasmalemma conductances (G(t) and G(p)) in low-Cl(-) and K(+)-free artificial seawater. Inhibition of turgor pressure regulation by 300 microM NPPB was accompanied by about 85% reduction of G(t) and G(p). Vacuolar addition of sulfate, an inhibitor of tonoplast Cl(-) transporters, together with external addition of DIDS and Ba(2+) (an inhibitor of K(+) transporters) also strongly reduced G(p) and G(t) but did not affect hypo-osmotic turgor pressure regulation. These and many other findings suggest that KCl efflux partly occurs via electrically silent transport systems. Candidates are vacuolar entities that are disconnected from the huge and many-folded central vacuole or that become disconnected upon disproportionate swelling of originally interconnected vacuolar entities upon acute hypo-osmotic challenge.  相似文献   

9.
Abstract Using the method of compartmental analysis, the ion fluxes and compartment concentrations of Ca2+, K+ and Cl- have been compared in the untreated vegetative frond and the abscisic acid (ABA) induced turion of Spirodela polyrrhiza. The ABA-induced turion is characterized by reduced Ca2+ exchange across the tonoplast and low vacuolar Ca2+ concentration relative to the vegetative frond. In addition the turion exhibits a higher plasmalemma flux with a correspondingly high Ca2+ concentration in the cytoplasm. The concentration of K+ and Cl- is much lower in the cytoplasm of the ABA-induced turion than in the vegetative frond with the influx/efflux ratio at both the plasmalemma and the tonoplast being less than 1, a finding exhibited also in dormant storage tissue. Treatment of vegetative fronds with ABA for 18 h resulted in a reduced K+ plasmalemma efflux relative to untreated vegetative fronds and a concomitant increase in the cytoplasmic concentration. There was no rapid effect of ABA on Ca2+, K+ or Cl- fluxes through either membrane. These results are consistent with the notion that drastic changes in ion fluxes and concentrations in the turion are a secondary consequence of ABA-induced development, possibly due to prior regulation by ABA of enzymes inherent to processes involved in membrane transport.  相似文献   

10.
Summary The action potential ofNitella internode was studied in relation to K+ and Cl concentrations in the vacuole. When the vacuole ofNitella pulchella was filled with an artificial solution with extremely low Cl concentration, a diphasic action potential (DAP) was observed. The first phase consists of a rapid depolarization followed by a relatively rapid repolarization, and the second one consists of a strong hyperpolarization followed by a gradual return to the resting potential.When the cell was stimulated immediately after the generation ofDAP, a monophasic action potential which resembles an action potential of the natural cell was observed, indicating that theDAP consists of two components with different refractory periods. The refractory period of the component responsible for the depolarizing phase is shorter than that of a component responsible for the hyperpolarizing phase. Measuring the plasmalemma potential and vacuolar potential separately, it was demonstrated that the hyperpolarizing component ofDAP originates from the tonoplast.The action potential of the tonoplast, in contrast with that of the plasmalemma, could be generated independently of concentration of K+ in the vacuole. Since the maximum amplitude of hyperpolarization decreased significantly by increasing Cl concentration of the vacuole, it is concluded that the tonoplast is very sensitive to Cl during excitation.  相似文献   

11.
Abstract: A new combined turgor/membrane potential probe (T-EP probe) monitored cell turgor and membrane potential simultaneously in single giant cells. The new probe consisted of a silicone oil-filled micropipette (oil-microelectrode), which conducted electric current. Measurements of turgor and hydraulic conductivity were performed as with the conventional cell pressure probe besides the membrane potential. In internodal cells of Chara corallina, steady state turgor (0.5-0.7 MPa) and resting potentials (-200 to ?220 mV) in APW, and hydraulic conductivity (0.07 to 0.21 × 10~5 m s?1 MPa?1) were measured with the new probe, and cells exhibited healthy cytoplasmic streaming for at least 24 h during measurements. When internodal cells of Chara corallina were treated with 30, 20, 10, and 5 mM KCI, turgor responded immediately to all concentrations, and the osmotic changes in the medium were measured. Action potentials, which brought the membrane potential to a steady depolarization that measured the concentration difference of K+ in the medium, were induced in a concentration — dependent delay and occurred only 30, 20, and 10 mM of KCl. When the solution was changed back to APW, the repolarization of membrane potential consisted of a quick and a following slow phase. During the quick phase, which took place immediately and lasted 1 to 3 min, the plasma membrane remained activated. The membrane was gradually deactivated in the slow phase, and entirely deactivated when the membrane potential recovered to the resting potential in APW. Although the activated plasma membrane was permeable to K+, no major ion channels were activated on the tonoplast, and therefore, internodal cells of Chara corallina did not regulate turgor when osmotic potential changed in the surrounding medium.  相似文献   

12.
The compartmental analysis method was used to estimate the K+ and Cl fluxes for cells of excised roots of Zea mays L. cv. Golden Bantam. When the measured fluxes are compared to those calculated with the Ussing-Teorell flux-ratio equation, an active inward transport of Cl across the plasmalemma is indicated; the plasmalemma K+ fluxes are not far different from those predicted for passive diffusion, although an active inward transport cannot be precluded. Whether fluxes across the tonoplast are active or passive depends upon the vacuolar potential which is unknown. Assuming no electropotential gradient, the tracer flux ratios are fairly close to those predicted for passive movement. However, if the vacuole is positive by about 10 millivolts relative to the cytoplasm, the data suggest active inward transport for K+ and outward transport for Cl.  相似文献   

13.
Summary This study is the first trial to measure the osmotic water permeability or the hydraulic conductivity of the plasmalemma alone of a plant cell. For this purpose tonoplast-free cells were prepared from intenodal cells ofChara australis and their hydraulic conductivities were measured by the transcellular osmosis method.The transcellular hydraulic conductivity did not change after removing the tonoplast. The transcellular hydraulic conductivity of the tonoplast-free cells was dependent on the internal osmotic pressure as is the case in the tonoplast-containing normal cells. The hydraulic conductivities for both endosmosis and exosmosis of the tonoplast-free cells were equal to respective values of the normal cells. Consequently the ratio between the inward and outward hydraulic conductivities did not change due to the loss of the tonoplast. The results indicate that the resistance of the tonoplast to water flow is negligibly small as compared with that of the plasmalemma and further that the tonoplast is not a factor responsible for the direction-dependency of hydraulic conductivity. The hydraulic conductivity of the plasmalemma is invariable for wide variations of K+ and Ca2+ in the cytoplasm.  相似文献   

14.
The aim of the present study was to test the accuracy of the pressure-chamber technique as a method for estimating leaf-cell turgor pressures. To this end, pressure-probe measurements of cell turgor pressure (Pcell) were made on mesophyll cells of intact, attached leaves of Kalanchoë daigremontiana. Immediately following these measurements, leaves were excised and placed in a pressure chamber for the determination of balance pressure (Pbal). Cell-sap osmotic pressure (?cell) and xylem-sap osmotic pressure (?xyl) were also measured, and an average cell turgor pressure calculated as Pcell=?cell–?xylPbal. The apparent value of Pbal was positively correlated with the rate of increase of chamber pressure, and there was also a time-dependent increase associated with water loss. On expressing sap from the xylem, ?xyl fell to a plateau value that was positively correlated with ?cell. Correcting for these effects yielded estimates of Pbal and ?xyl at the time of leaf excision. On average, the values of Pcell obtained with the two techniques agreed to within ±002 MPa (errors are approximate 95% confidence limits). If ?xyl were ignored, however, the calculated turgor pressures would exceed the measured values by an average of 0.074 ± 0.012MPa, or 48% at the mean measured pressure of 0.155 MPa. We conclude that the pressure-chamber technique allows a good estimate to be made of turgor pressure in mesophyll cells of K. daigremontiana, provided that ?xyl is included in the determination. The 1:1 relationship between the measured and calculated turgor pressures also implies that the weighted-average reflection coefficient for the mesophyll cell membranes is close to unity.  相似文献   

15.
In plants the vacuolar functions are the cellular storage of soluble carbohydrates, organic acids, inorganic ions and toxic compounds. Transporters and channels located in the vacuolar membrane, the tonoplast, are modulated by PTMs to facilitate the optimal functioning of a large number of metabolic pathways. Here we present a phosphoproteomic approach for the identification of in vivo phosphorylation sites of tonoplast (vacuolar membrane) proteins. Highly purified tonoplast and tonoplast‐enriched microsomes were isolated from photosynthetically induced barley (Hordeum vulgare) mesophyll protoplasts. Phosphopeptides were enriched by strong cation exchange (SCX) chromatography followed either by IMAC or titanium dioxide (TiO2) affinity chromatography and were subsequently analysed using LC‐ESI‐MS/MS. In total, 65 phosphopeptides of 27 known vacuolar membrane proteins were identified, including the two vacuolar proton pumps, aquaporins, CAX transporters, Na+/H+ antiporters as well as other known vacuolar transporters mediating the transfer of potassium, sugars, sulphate and malate. The present study provides a novel source to further analyse the regulation of tonoplast proteins by protein phosphorylations, especially as most of the identified phosphorylation sites are highly conserved between Hordeum vulgare (Hv) and Arabidopsis thaliana.  相似文献   

16.
Electrical signals, including action potential (AP), play an important role in plant adaptation to the changing environmental conditions. Experimental and theoretical investigations of the mechanisms of AP generation are required to understand the relationships between environmental factors and electrical activity of plants. In this work we have elaborated a mathematical model of AP generation, which takes into account the participation of vacuole in the generation of electrical response. The model describes the transporters of the plasma membrane (Ca2+, Cl, and K+ channels, H+- and Ca2+-ATPases, H+/K+ antiporter, and 2H+/Cl symporter) and the tonoplast (Ca2+, Cl, and K+ channels; H+- and Ca2+-ATPases; H+/K+, 2H+/Cl, and 3H+/Ca2+ antiporters), with due consideration of their regulation by second messengers (Ca2+ and IP3). The apoplastic, cytoplasmic and vacuolar buffers are also described. The properties of the simulated AP are in good agreement with experimental data. The AP model describes the attenuation of electrical signal with an increase in the vacuole area and volume; this effect is related to a decrease in the Ca2+ spike magnitude. The electrical signal was weakly influenced by the K+ and Cl content in the vacuole. It was also shown that the contribution of vacuolar IP3-dependent Ca2+ channels into the generation of calcium spike during AP was insignificant with the given parameters of the model. The results provide theoretical evidence for the significance of the vacuolar area and volume in plant cell excitability.  相似文献   

17.
Abstract The comparative Na+ tolerance of Chora buckellii cultured in freshwater (FW) or artificial Waldsea water (AWW, which contains about 110 mol m?3 each Na +, Mg2+, Cl? and SO2-4 was tested with respect to the external Na+ to Ca2+ ratio (Na: Ca). Fifty per cent of FW cells subjected to 70 mol m?3 NaCl, which raised Na:Ca from 10: 1 to 700: 1 and the external osmotic pressure from 0.024 to 0.402 MPa, died within 6 d. Death was associated with the loss of Na/K selectivity, H+ -pump activity and turgor. Restoration of Na:Ca to 10:1 in high Na+ medium with CaCl2 ensured 100% survival and maintained H+-pump activity and Na/K selectivity of FW cells. Turgor was regulated within 3 d with net uptake of Na +, K+ and Cl? in the vacuolc. Mg2+ was not as effective as Ca2+ in enhancing survival or maintaining H+ -pump activity and Na/K selectivity of FW cells in the presence of elevated Na+. However, turgor was regulated within 3 d by accumulation of Cl? and an unknown cation in the vacuole. All AWW cells subjected to an increase of 70 mol m ?3 NaCl, which raised Na: Ca from 16:1 to 25: 1 and the external osmotic pressure from 0.915 to 1.22 MPa, survived and maintained H + -pump activity. Turgor was regulated within 6d by accumulating Na +, K+ and Cl? in the vacuole. All AWW cells subjected to 70molm?3 NaCl in a medium in which Na:Ca was equal to 700:1 survived and maintained H + -pump activity, but showed loss of Na/K selectivity. Turgor was regulated with an unknown osmoticum(a) within 6 d.  相似文献   

18.
Abstract Internodal cells of Lamprothamnium succinctum, a brackish water Characeae, regulate turgor pressure in response to changes in external osmotic pressure (turgor regulation). When internodal cells were transferred to a hypotonic medium containing 3.9 mol m?3 Ca2+, the cell osmotic pressure decreased and the original turgor pressure was recovered. During turgor regulation Ca content of the cytoplasm increased significantly. Lowering the external Ca2+ concentration from 3.9 to 0.01 mol m?3 inhibited this increase in cytoplasmic calcium content. In a hypotonic medium containing 0.01 mol m?3 Ca2+, turgor regulation was inhibited as previously reported (Okazaki & Tazawa, 1986a). Thus transient increase in cytoplasmic Ca, probably in the ionized form, induced by hypotonic treatment may play an important role in turgor regulation.  相似文献   

19.
Cell recovery from osmotic stress was studied in suspension cell cultures from Alternanthera philoxeroides [Mart.] Griseb. Changes in different classes of cellular solutes were measured after cells were transferred from 0 to 200 mM NaCl (high salt) to obtain an integrated picture of the solute pools involved in osmotic adjustment. By 2 h, cellular [Na+] and [Cl] had increased several-fold, potentially accounting for the osmotic adjustment that produced a rapid recovery of cell turgor. There was a four-fold increase in the concentration of quaternary ammonium compounds (QAC) by 12 h and a slower increase for several days afterward. Betaine aldehyde dehydrogenase (BADH) is required for synthesis of glycine betaine, a QAC produced by a range of organisms in response to osmotic stress. Western-blot analysis for BADH suggested that glycine betaine was a significant component of the QAC solutes. The amount of BADH was generally similar at different sampling times for control and high salt cells, unlike previous reports of stimulation by osmotic stress in intact plants of some species. Between 3 and 7 days after cell transfer to high salt, other organic solutes increased in concentration and [Na+] and [Cl] decreased. In A. philoxeroides, high [Na+] and [Cl] produce rapid osmotic adjustment but organic solutes apparently replace these potentially harmful inorganic ions after the recovery of turgor.  相似文献   

20.
Summary The vacuolar equilibrium potential of the lipophilic cation TPMP+ (triphenyl methyl phosphonium) in the giant algaeChara australis andGriffithsia monilis was directly measured. The TPMP+ equilibrium potential was approximately 100mV less negative than the measured vacuolar electrical potential. Thus TPMP+ does not act as a probe of the vacuolar electrical potential and appears to be extruded against an electrochemical gradient. Measurement of the plasmalemma equilibrium potential of TPMP+ showed that extrusion of TPMP+ apparently occurred at both the tonoplast and plasmalemma inChara and at the plasmalemma inGriffithsia. It is concluded that TPMP+ cannot be used as a membrane potential probe inChara orGriffithsia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号