首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arbuscular mycorrhizal symbiosis, a key component of agroecosystems, was assayed as a rhizosphere biosensor for evaluation of the impact of certain antifungal Pseudomonas inoculants used to control soil-borne plant pathogens. The following three Pseudomonas strains were tested: wild-type strain F113, which produces the antifungal compound 2,4-diacetylphloroglucinol (DAPG); strain F113G22, a DAPG-negative mutant of F113; and strain F113(pCU203), a DAPG overproducer. Wild-type strain F113 and mutant strain F113G22 stimulated both mycelial development from Glomus mosseae spores germinating in soil and tomato root colonization. Strain F113(pCU203) did not adversely affect G. mosseae performance. Mycelial development, but not spore germination, is sensitive to 10 μM DAPG, a concentration that might be present in the rhizosphere. The results of scanning electron and confocal microscopy demonstrated that strain F113 and its derivatives adhered to G. mosseae spores independent of the ability to produce DAPG.  相似文献   

2.
The aim of this work was to determine the effect of wild type and functionally modified Pseudomonas fluorescens strains on C fractions in the rhizosphere of pea. The lac ZY marked F113 strain produces the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control. The modified strain of F113 was represented in production of DAPG, creating the DAPG negative strain F113 G22. The F113 treatment resulted in a significantly lower shoot/root ratio. The F113 G22 treatment had a significantly greater indigenous and total fluorescent Pseudomonas population than the control and F113 (DAPG+) treatment. Both strains significantly increased the water soluble carbohydrates and the total water soluble carbon in the pea rhizosphere soil. Strain F113 significantly increased the soil protein content relative to the control, but not in relation to the F113 G22 treatment. The F113 treatment had a significantly greater organic acid content than the control and F113 G22 treatments, whilst the F113 G22 treatment was also significantly greater than the control. Both inocula resulted in significantly lower phosphate contents than the control. The F113 inocula significantly increased alkaline phosphatase, sulphatase and urease activities, and reduced β glucosidase activities indicating increased carbon availability. Both inocula increased C availability ; however, antibiotic production by strain F113 reduced the utilisation of organic acids released from the plant resulting in differing effects of the two strains on nutrient availability, plant growth, soil enzyme activities and Pseudomonas populations.  相似文献   

3.
Pseudomonas fluorescens F113lacZY and modified strains carrying different function modifications were assessed for their impact in the rhizosphere of pea. Strain F113lacZY naturally produces the anti-fungal metabolite 2,4-diacetylphloroglucinol (Phl) useful in plant disease control. The first modified strain of F113 was repressed in production of Phl, creating the Phl negative strain F113G22. The second was a plasmid based overproducer of Phl (F113Rif (pCUGP)). Both the F113lacZY and the F113Rif (pCUGP) strains increased the rhizoplane fungal populations, whereas the same strains reduced the rhizosphere soil fungal populations with respect to the control. Similar results were found with the rhizoplane and rhizosphere soil bacterial populations. The F113G22 treatment resulted in a significantly greater indigenous fluorescent Pseudomonas population than the F113lacZY and F113Rif (pCUGP) treatments and a greater total Pseudomonas population than the control, F113lacZY, and F113Rif (pCUGP) treatments. Overproduction of Phl did not affect the establishment of the introduced Pseudomonas population. None of the inocula displaced the indigenous populations, but the F113G22 inocula had an additive effect on the total Pseudomonas population. P (phosphatase), S (sulphatase), and N (urease) cycle enzyme activities were increased while C (glucosidase, NAGase) cycle activities were decreased by the F113lacZY and F113Rif (pCUGP) treatments, suggesting C leakage from the roots. Overall, most effects of inoculation compared to the wild type were found with the non-Phl-producing strain. Overproduction of Phl had little environmental effect in relation to wild-type inocula.  相似文献   

4.
The aim of this study was to determine the impact of wild-type along with functionally and nonfunctionally modified Pseudomonas fluorescens strains in the rhizosphere. The wild-type F113 strain carried a gene encoding the production of the antibiotic 2,4-diacetylphloroglucinol (DAPG) useful in plant disease control, and was marked with a lacZY gene cassette. The first modified strain was a functional modification of strain F113 with repressed production of DAPG, creating the DAPG-negative strain F113 G22. The second paired comparison was a nonfunctional modification of wild-type (unmarked) strain SBW25, constructed to carry marker genes only, creating strain SBW25 EeZY-6KX. Significant perturbations were found in the indigenous bacterial population structure, with the F113 (DAPG+) strain causing a shift towards slower growing colonies (K strategists) compared with the nonantibiotic-producing derivative (F113 G22) and the SBW25 strains. The DAPG+ strain also significantly reduced, in comparison with the other inocula, the total Pseudomonas populations but did not affect the total microbial populations. The survival of F113 and F113 G22 were an order of magnitude lower than the SBW 25 strains. The DAPG+ strain caused a significant decrease in the shoot-to-root ratio in comparison to the control and other inoculants, indicating plant stress. F113 increased soil alkaline phosphatase, phosphodiesterase and aryl sulphatase activities compared to the other inocula, which themselves reduced the same enzyme activities compared to the control. In contrast to this, the β-glucosidase, β-galactosidase and N -acetyl glucosaminidase activities decreased with the inoculation of the DAPG+ strain. These results indicate that soil enzymes are sensitive to the impact of inoculation with genetically modified microorganisms (GMMs).  相似文献   

5.
Pseudomonas sp. strain F113 was isolated from the rhizosphere of sugar beets and shown to inhibit a range of plant pathogenic fungi by producing an antibioticlike compound. An antibiotic-negative mutant strain, F113G22, was generated by transposon mutagenesis. This mutant has lost the ability to inhibit both bacterial and fungal microorganisms on high-iron medium. The antibioticlike compound was subsequently identified as 2,4-diacetylphloroglucinol (DAPG), and a high-pressure liquid chromatographic assay was developed for to detect it quantitatively in growth culture media and soil. The growth temperature had a direct bearing on DAPG production by strain F113, with maximum production at 12°C. The iron concentration, pH, and oxygen had no influence on DAPG production by strain F113 under the assay conditions used. However, a low ratio of culture volume to surface area available to the microbe in the growth container was critical for optimum DAPG production. Different types of carbon sources influenced DAPG production by strain F113 to various degrees. For example, sucrose, fructose, and mannitol promoted high yields of DAPG by strain F113, whereas glucose and sorbose resulted in very poor DAPG production.  相似文献   

6.
The effects of an antibiotic-producing Pseudomonas fluorescens strain (F113) carrying the marker gene cassette lacZY and a marked, non-producing strain (F113G22) on the uptake of nitrogen from 15N-enriched organic residues incorporated into a sandy soil were investigated in microcosm studies. Strain F113 produces the antibiotic 2,4-diacetylphloroglucinol (DAPG), whilst its modified derivative strain F113G22 has DAPG production deleted by Tn5 mutagenesis. Uptake of nitrogen by wheat (Triticum aestivum) from 15N-enriched organic residues was estimated using stable isotope-ratio mass spectrometry of shoot and root material of 17-day-old plants. In addition, plant growth and active microbial biomass in soil were monitored. In contrast to results obtained in our previous study on pea (Pisum sativum), it was found that in wheat, inoculation with either strain F113 or F113G22 decreased the proportion of nitrogen derived from 15N-labelled organic residues incorporated into soil as compared to non-inoculated controls. It is therefore suggested that these strains decreased mineralization of organic residues in the rhizosphere of wheat, making less inorganic N (15N) available for plant uptake. The results of this study indicate that the effects of introduced Pseudomonas fluorescens strains on nitrogen mineralization in the rhizosphere are plant-species dependent, and highlight the importance of testing microbial inocula on a range of plant species.  相似文献   

7.
The effects of an antibiotic-producing Pseudomonas fluorescens strain (F113) carrying the marker gene cassette lac ZY and a marked, non-producing strain (F113G22) on the uptake of nitrogen from 15N enriched organic residues incorporated into a sandy soil were investigated in microcosm studies. Strain F113 produces the antibiotic 2,4-diacetylphloroglucinol (DAPG), while its modified derivative strain F113G22 has DAPG production deleted by Tn 5 mutagenesis. Uptake of nitrogen by pea ( Pisum sativum ) was estimated using isotope-ratio mass spectrometry. In addition, plant growth and microbial activity in soil were monitored. Both strains F113 and F113G22 enhanced the uptake of nitrogen from mineralized organic residues, even though the antibiotic producing strain F113 significantly reduced microbial activity in soil. It is suggested that the effect on nitrogen uptake was due to increased mineralization of organic residues by the introduced organisms, making greater quantities of inorganic nitrogen available for plant uptake. Unlike studies assessing impact in terms of perturbation to indigenous microbial communities, this study provides direct evidence of a change in ecosystem function as a result of the introduction of strains of a genetically marked bacterium, irrespective of whether its natural antibiotic-producing capacity has been genetically deleted.  相似文献   

8.
Abstract Previous studies have shown that inoculation of pea seeds with Pseudomonas fluorescens strains F113lacZY or F113G22 increased mineralization of organic nitrogen in the rhizosphere. In contrast, inoculation of the same strains onto wheat seeds reduced mineralization of N from organic residues incorporated into soil. In the present study, we report on a likely explanation of this phenomenon, which appears to be governed by the effect of plant-microbe interactions on bacterial-feeding nematodes and protozoa. In soil microcosm tests, inoculation of pea seeds with Pseudomonas fluorescens strains F113lacZY or F113G22 resulted in an increase in the number of nematodes and protozoa in the rhizosphere as compared to noninoculated controls. This trend was repeated using a model sand system into which the bacteriophagous nematode Caenorhabditis elegans was introduced. It was subsequently found that non-inoculated germinating pea seeds exerted a nematicidal effect on C. elegans, which was remedied by inoculation with either strain F113lacZY or F113G22. This suggests that nematicidal compounds released by the germinating pea seeds were metabolized by the microbial inoculants before they affected nematode populations in the spermosphere or rhizosphere of pea. In contrast, inoculation of wheat plants resulted in significantly lower nematode populations in the rhizosphere, whereas protozoan numbers were unaffected. No nematicidal effects of inoculated or noninoculated wheat seeds could be found, suggesting that microfaunal populations were affected at a later stage during plant growth. Because of their key roles in accelerating the turnover of microbially immobilized N and organic matter, plants that support a larger microfaunal population are likely to benefit from a higher availability of inorganic nitrogen. Therefore, an understanding of plant-microbe interactions and their effects on soil microfaunal populations is essential in order to assess the effects of microbial inocula on plant mineral nutrition. Received: 27 May 1999; Accepted: 15 July 1999; Online Publication: 17 December 1999  相似文献   

9.
Sugarbeet seeds used by farmers are often pelleted using an EBTM-based mix. During the pelleting process, the seeds are dried immediately after application of the mix. In this work, the effects of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113Rif were investigated using a 1:1 EBTM/vermiculite mix and sugarbeet seeds pelleted with this material. Growing F113Rif for 3 d (28 °C) within the EBTM/vermiculite mix amended with nutrients (sucrose asparagine broth), instead of adding the cells to the unamended mix immediately before drying the mix or the pelleted sugarbeet seeds, resulted in improved survival of the strain in the mix or on the seeds, respectively, during subsequent storage. A slower drying (20 h instead of 3 h) of the F113Rif-inoculated EBTM/vermiculite mix to 11% w/w water content enhanced strain survival in the mix during storage, but the drying conditions studied had no effect on inoculant survival on the seed during storage when pelleted seeds were dried to 10% w/w water content. Biological control of damping-off disease of sugarbeet (caused by Pythium spp.) in soil microcosms was achieved when F113Rif was inoculated in the unamended mix 3 d before pelleting the seeds, but not when nutrient-amended mix was used. Inoculum preparation and drying of the formulation are key factors to consider when optimizing the use of a commercial EBTM/vermiculite seed formulation for delivery of a biocontrol Pseudomonas inoculant.  相似文献   

10.
The potato cyst nematode Globodera rostochiensis is an important pest of potato (Solanum tuberosum). Pseudomonas fluorescens F113, which produces 2,4-diacetylphloroglucinol (DAPG), was investigated as a potential biocontrol agent against G. rostochiensis. Exposure of nematode cysts to the pseudomonad, under in vitro conditions or in soil microcosms, almost doubled the ability of the eggs to hatch. The percentage of mobile juveniles was reduced threefold following their incubation in the presence of the pseudomonad, both in vitro and in soil. Results obtained with a transposon-induced DAPG-negative biosynthetic mutant of F113 and its complemented derivative with restored DAPG synthesis showed that the ability of strain F113 to produce DAPG was responsible for the increase in hatch ability and the reduction in juvenile mobility. Similar effects on egg hatch ability and juvenile mobility of G. rostochiensis were obtained in vitro by incubating nematode cysts and juveniles, respectively, in the presence of synthetic DAPG. DAPG-producing P. fluorescens F113 is proposed as a potential biocontrol inoculant for the protection of potato crops against the potato cyst nematode.  相似文献   

11.
Tn5 mutagenesis and complementation analysis were used to clone a 6-kb genomic fragment required for biosynthesis of 2,4-diacetylphloroglucinol (Phl) from fluorescent Pseudomonas sp. strain F113. A recombinant plasmid, pCU203, containing this region partially complemented a Phl production-negative mutant (F113G22) derived from strain F113. When sugar beet seeds were sown into an unsterilized soil, in which sugar beet was subject to damping-off by Pythium ultimum, the emergence of sugar beet seeds inoculated with strain F113 was significantly greater than that of seeds inoculated with F113G22. Transfer of pCU203 into eight other Pseudomonas strains conferred the ability to synthesize Phl in only one of these strains, Pseudomonas sp. strain M114. Strain M114(pCU203) showed enhanced antagonism towards P. ultimum in vitro and significantly increased the emergence of sugar beet seeds in the same soil compared with emergence induced by the parent strain M114.  相似文献   

12.
Tn5 mutagenesis and complementation analysis were used to clone a 6-kb genomic fragment required for biosynthesis of 2,4-diacetylphloroglucinol (Phl) from fluorescent Pseudomonas sp. strain F113. A recombinant plasmid, pCU203, containing this region partially complemented a Phl production-negative mutant (F113G22) derived from strain F113. When sugar beet seeds were sown into an unsterilized soil, in which sugar beet was subject to damping-off by Pythium ultimum, the emergence of sugar beet seeds inoculated with strain F113 was significantly greater than that of seeds inoculated with F113G22. Transfer of pCU203 into eight other Pseudomonas strains conferred the ability to synthesize Phl in only one of these strains, Pseudomonas sp. strain M114. Strain M114(pCU203) showed enhanced antagonism towards P. ultimum in vitro and significantly increased the emergence of sugar beet seeds in the same soil compared with emergence induced by the parent strain M114.  相似文献   

13.
Abstract The aim of this microcosm study was to determine influence of the antibiotic 2,4-diacetylphloroglucinol (DAPG) on the effect of wild-type and functionally modified Pseudomonas fluorescens F113 strains in a sandy loam soil of pH 5.4 planted with pea (Pisum sativum var Montana). The functional modification of strain F113 was a repressed production of DAPG, useful in plant disease control, creating the DAPG negative strain F113 G22; both were marked with a lacZY gene cassette. Lowering the soil pH to 4.4 significantly reduced the plant shoot and root weights and the root length, whereas the bacterial inocula had no significant effect. Both inocula significantly reduced the shoot/root ratio at pH 5.4, but this effect was not evident at the lowered or elevated (6.4) pH levels. The decrease in pH significantly increased the fungal and yeast colony-forming units from the rhizosphere (root extract), but did not affect the total bacterial c.f.u.'s. Inoculatioin with strain F113 in the pH 4.4 soil resulted in a significantly greater total bacterial population. The fungal and yeast c.f.u.'s were not significantly affected by the inocula at any pH studied. Increasing the pH significantly increased the indigenous Pseudomonas population in comparison to the reduced pH treatment and significantly increased both the introduced and total Pseudomonas populations. The antibiotic producing strain significantly reduced the total bacterial population and the NAGase activity (related to fungal activity) at pH 6.4 where the inocula population was the greatest. Alkaline phosphatase, phosphodiesterase, aryl sulfatase, β-glucosidase, alkaline β-galactosidase, and NAGase activities significantly increased with increasing in pH. The F113 inocula reduced the acid phosphatase activity at pH 5.4 and increased the acid β-galactosidase activity over all the pH treatments. The results presented illustrate the variation in impact with soil pH, with implications for variability in efficacy of Pseudomonas fluorescens biocontrol agents with soil pH. Received: 26 June 1998; Accepted: 1 February 1999  相似文献   

14.
Delany  I.R.  Walsh  U.F.  Ross  I.  Fenton  A.M.  Corkery  D.M.  O'Gara  F. 《Plant and Soil》2001,232(1-2):195-205
Pseudomonas fluorescens F113 is an effective biocontrol agent against Pythium ultimum, the causative agent of damping-off of sugarbeet seedlings. Biocontrol is mediated via the production of the anti-fungal metabolite 2,4-diacetylphloroglucinol (Phl). A genetic approach was used to further enhance the biocontrol ability of F113. Two genetically modified (GM) strains, P. fluorescens F113Rif (pCU8.3) and P. fluorescens F113Rif (pCUP9), were developed for enhanced Phl production and assessed for biocontrol efficacy and impact on sugarbeet in microcosm experiments. The multicopy plasmid pCU8.3 contains the biosynthetic genes (phlA, C, B and D) and the putative permease gene (phlE) of F113 cloned into the rhizosphere stable plasmid pME6010, independent of external promoters. The plasmid pCUP9 consists of the Phl biosynthetic genes cloned downstream of the constitutive Plac promoter in pBBR1MCS. Introduction of pCU8.3 and pCUP9 into P. fluorescens F113 significantly altered the kinetics of Phl biosynthesis when grown in SA medium. A significant and substantial increase in Phl production by the GM strains was observed in the early logarithmic phase and stationary phase of growth compared with the wild-type strain. In microcosm, the two Phl overproducing strains proved to be as effective at controlling damping-off disease as the proprietary fungicide treatment, indicating the potential of genetic modification for plant disease control.  相似文献   

15.
Abstract: The ability to utilise additional siderophores may increase the ecological fitness of biocontrol inoculants of Pseudomonas in the rhizosphere. Plasmid pCUP2 carries a copy of the gene pbu A coding for the membrane receptor of ferric pseudobactin M114. Pseudomonas sp. B24Rif containing pCUP2 can utilise ferric pseudobactin of P. fluorescens M114 in addition to its own siderophore. A larger fraction of the culturable resident fluorescent pseudomonads in the rhizosphere of sugarbeet grown in a low-iron sandy loam soil could supply siderophore-complexed iron to B24Rif(pCUP2) rather than to B24Rif. However, B24Rif and B24Rif(pCUP2) were found at similar population levels in the rhizosphere for 21 days after their inoculation on seeds. A total of 25 of 43 isolates of resident fluorescent Pseudomonas unable to cross-feed iron to B24Rif could cross-feed B24Rif(pCUP2) and they were subdivided into seven different strains by arbitrary-primed PCR fingerprinting. The siderophores produced by 11 of them were typed by HPLC and they were similar to pseudobactin M114. However, the ability to utilise ferric pseudobactin M114 did not improve the ecological fitness of B24Rif in the rhizosphere of sugarbeet although a larger fraction of the culturable resident fluorescent pseudomonads could supply pseudobactin M114-complexed iron to B24Rif(pCUP2) than to B24Rif.  相似文献   

16.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

17.
Resca  R.  Basaglia  M.  Poggiolini  S.  Vian  P.  Bardin  S.  Walsh  U. F.  Enriquez Barreiros  C. M.  O'Gara  F.  Nuti  M. P.  Casella  S.  Peruch  U. 《Plant and Soil》2001,232(1-2):215-226
Rhizomania is an extremely severe sugarbeet disease caused by the complex Polymyxa betae/Beet Necrotic Yellow Vein Virus (BNYVV). A relatively small number of recently introduced sugarbeet cultivars characterized by a high tolerance to rhizomania are available on the market. An integrated approach was therefore developed using Pseudomonas fluorescens biological control agents (BCAs) in order to improve yield performance of cultivars characterized by a medium tolerance to the disease. A genetically modified biological control agent, Pseudomonas fluorescens F113Rif (pCUGP), was developed for enhanced production of the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) and lacking an antibiotic resistance marker gene, making the strain suitable for field release. The ability of synthetic Phl and P. fluorescens F113Rif (pCUGP) to antagonize the fungal vector, P. betae, was assessed in microcosm trials. Results encouraged the preparation of multiple field trials in a soil naturally infested with P. betae/BNYVV, to determine the biocontrol efficacy of P. fluorescens F113Rif (pCUGP) and to assess its impact on sugarbeet yield and quality and on the indigenous microbial population. While the colonization ability of P. fluorescens F113Rif (pCUGP) was satisfactory at sugarbeet emergence (2.5×106 CFU g–1 root), control of rhizomania was not achieved. Inoculation of sugarbeet with Pseudomonas fluorescens F113Rif (pCUGP) did not affect crop yield and quality nor affect the numbers of selected microbial populations.  相似文献   

18.
A field trial was previously conducted in which sugarbeet seeds were either untreated, inoculated with the biocontrol strain Pseudomonas fluorescens F113Rif, or treated with chemical fungicides. Following harvest of sugarbeet, the field site was sown with uninoculated red clover. The aim of this study was to assess the residual impact of the microbial inoculant (and the fungicide treatment) on the diversity of resident rhizobia nodulating the red clover rotation crop. The percentage of nodules yielding rhizobial isolates after surface disinfection was 67% in the control and 70% in the P. fluorescens F113Rif treatment, but only 23% in the chemical treatment. Isolates were characterized by RAPD analysis. The main RAPD cluster (arbitrarily defined at 70% similarity) was prevalent in all three treatments. In addition, the distribution of RAPD clusters followed a log series model, regardless of the treatment applied, indicating that neither the microbial inoculant nor the fungicide treatment had caused a strong perturbation of the rhizobial population. When the P. fluorescens F113Rif and control treatments were compared using diversity indices, however, it appeared that the genetic diversity of rhizobia was significantly less in the inoculated treatment. The percentage of rhizobia sensitive to 2,4-diacetylphloroglucinol (Phl; the antimicrobial metabolite produced by P. fluorescens F113Rif) fluctuated according to field site heterogeneity, and treatments had no effect on this percentage. Yet, the proportion of Phl-sensitive isolates in the main RAPD cluster was lower in the P. fluorescens F113Rif treatment compared with the control, raising the possibility that the residual impact of the inoculant could have been partly mediated by production of Phl. This impact on the rhizobial population took place without affecting the functioning of the Rhizobium–clover symbiosis.  相似文献   

19.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA′-′lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA′-′lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA+) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

20.
Pseudomonas putida WCS358r, genetically modified to have improved activity against soil-borne pathogens, was released into the rhizosphere of wheat. Two genetically modified derivatives carried the phzor the phl biosynthetic gene loci and constitutively produced either the antifungal compound phenazine-1-carboxylic acid (PCA) or the antifungal and antibacterial compound 2,4-diacetylphloroglucinol (DAPG). In 1997 and 1998, effects of single introductions of PCA producing derivatives on the indigenous microflora were studied. A transient shift in the composition of the total fungal microflora, determined by amplified ribosomal DNA restiction analysis (ARDRA), was detected. Starting in 1999, effects of repeated introduction of genetically modified microorganisms (GMMs) were studied. Wheat seeds coated with the PCA producer, the DAPG producer, a mixture of the PCA and DAPG producers, or WCS358r, were sown and the densities, composition and activities of the rhizosphere microbial populations were measured. All introduced strains decreased from 107CFU per gram of rhizosphere sample to below the detection limit after harvest of the wheat plants. The phz genes were stably maintained in the PCA producers, and PCA was detected in rhizosphere extracts of plants treated with this strain or with the mixture of the PCA and DAPG producers. The phl genes were also stably maintained in the DAPG producing derivative of WCS358r. Effects of the genetically modified bacteria on the rhizosphere fungi and bacteria were analyzed by using amplified ribosomal DNA restriction analysis. Introduction of the genetically modified bacterial strains caused a transient change in the composition of the rhizosphere microflora. However, introduction of the GMMs did not affect the several soil microbial activities that were investigated in this study. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号