首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Collazo  H Takahashi  R D McKay 《Neuron》1992,9(4):643-656
The expression of the neurotrophins and trk receptors in the hippocampus has directed attention toward their roles in the development and maintenance of this region. We have examined the effects of the neurotrophins NT-3, BDNF, and NGF in cultures of developing rat hippocampal cells by two criteria: rapid induction of c-fos and neurotrophic responses. The selective induction of c-fos mRNA suggests the presence of functional receptors for NT-3 and BDNF, but not NGF, in embryonic hippocampal cultures. The NT-3-responsive cells were localized in pyramidal neurons of areas CA1 through CA3 and dentate granular and hilar cells of postnatal organotypic slices, as detected by c-Fos immunocytochemistry. In addition to immediate early responses, NT-3 caused a 10-fold increase in the number of cells expressing the neuronal antigen calbindin-D28k. This increase was dose dependent, with maximal stimulation at 10 ng/ml. In contrast, BDNF elicited small but significant calbindin responses. These results indicate biological responses to NT-3 in the CNS and suggest roles for for this neurotrophin during hippocampal neurogenesis.  相似文献   

2.
The development of cerebellar cortex is strongly impaired by thyroid hormone (T3) deficiency, leading to altered migration, differentiation, synaptogenesis, and survival of neurons. To determine whether alteration in the expression of neurotrophins and/or their receptors may contribute to these impairments, we first analyzed their expression using a sensitive RNAse protection assay and in situ hybridization; second, we administered the deficient neurotrophins to hypothyroid animals. We found that early hypothyroidism disrupted the developmental pattern of expression of the four neurotrophins, leading to relatively higher levels of NGF and neurotrophin 4/5 mRNAs and to a severe deficit in NT-3 and brain-derived neurotrophic factor (BDNF) mRNA expression, without alteration in the levels of the full-length tyrosine kinase (trk) B and trkC receptor mRNAs. Grafting of P3 hypothyroid rats with cell lines expressing high levels of neurotrophin 3 (NT-3) or BDNF prevented hypothyroidism-induced cell death in neurons of the internal granule cell layer at P15. In addition, we found that NT-3, but not BDNF, induced the differentiation and/or migration of neurons in the external granule cell layer, stimulated the elaboration of the dendritic tree by Purkinje cells, and promoted the formation of the mature pattern of synaptic afferents to Purkinje cell somas. Thus, our results indicate that both granule and Purkinje neurons require appropriate levels of NT-3 for normal development in vivo and suggest that T3 may regulate the levels of neurotrophins to promote the development of cerebellum.  相似文献   

3.
The neurotrophins exhibit neurotrophic effects on specific, partially overlapping populations of neurons both in the peripheral and the central nervous system (CNS). In the periphery, they are synthesized by a variety of nonneuronal cells, and their synthesis seems to be independent of the neuronal input. In contrast, in the CNS all neurotrophins are expressed under physiological conditions primarily by neurons. The production of NGF and BDNF is controlled by neuronal activity: up-regulation by glutamate and acetylcholine, down-regulation by gamma-aminobutyric acid. In contrast, NT-3 regulation is independent of neuronal activity, but it is up-regulated by thyroid hormones and BDNF. The latter observation suggests that NT-3 might be controlled indirectly by neuronal activity via BDNF. In peripheral nonneuronal tissues, glucocorticoid hormones down-regulate NGF mRNA levels both in vitro and in vivo. In contrast, in the CNS, neuronal production of NGF is enhanced by glucocorticoids. The rapid regulation of NGF and BDNF by subtle physiological stimuli together with the recent demonstration that the neurotrophin release neurotransmitters such as acetylcholine opens up interesting perspectives for the function of neurotrophins as mediators of neuronal plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

4.
The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.  相似文献   

5.
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of approximately 14.7 kDa, 14.2 kDa, 13.6 kDa, and 14.5 kDa, for NGF, BDNF, NT-3, and NT-4, respectively. These positions coincided with the molecular masses of the neurotrophins studied. Furthermore, sections exposed to primary antiserum preadsorbed with full-length NGF, BDNF, NT-3, and NT-4 exhibited no detectable immunoreactivity, demonstrating specificities of the antibodies against the tissues prepared from rhesus monkeys. The study provided a systematic report on the distribution of NGF, BDNF, NT-3, and NT-4 in the monkey brain. Varying intensity of immunostaining was observed in the somata and processes of a wide variety of neurons and glial cells in the cerebrum, cerebellum, hippocampus, and other regions of the brain. Neurons in some regions such as the cerebral cortex and the hippocampus, which stained for neurotrophins, also expressed neurotrophic factor mRNA. In some other brain regions, there was discrepancy of protein distribution and mRNA expression reported previously, indicating a retrograde or anterograde action mode of neurotrophins. Results of this study provide a morphological basis for the elucidation of the roles of NGF, BDNF, NT-3, and NT-4 in adult primate brains.  相似文献   

6.
Abstract: The ability of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) to promote neuronal survival and phenotypic differentiation was examined in dissociated cultures from embryonic day 16 rat cerebellum. BDNF treatment increased the survival of neuron-specific enolase-immunopositive cells by 250 and 400% after 8 and 10 days in culture, respectively. A subpopulation of these neurons, the Purkinje cells, identified by calbindin staining, was increased to an equivalent extent, ∼200%, following BDNF, NT-4/5, or NT-3 treatment. The number of GABAergic neurons, identified by GABA immunoreactivity, was greatly increased by treatment with BDNF (470%) and moderately by NT-4/5 (46%), whereas NT-3 was without effect. NGF failed to increase the number of either Purkinje cells or GABAergic neurons. Addition of BDNF within 48 h of cell plating was required to obtain a maximal increase in Purkinje cell number after 8 days. In contrast, the NT-3 responses were nearly equivalent even if treatment was delayed for 96 h after plating. BDNF, NT-4/5, and NT-3, but not NGF, induced the rapid expression of the immediate early gene c- fos . Immunocytochemical double-labeling with antibodies to c-fos and calbindin was used to identify Purkinje cells that responded to neurotrophin treatment by induction of c-fos. After 4 days in vitro, both BDNF and NT-3 induced the formation of c-fos protein in calbindin-immunopositive neurons, whereas NT-4/5 did not. The latter results suggest that although BDNF and NT-4/5 have been shown to act through a common receptor, TrkB, it appears that the effects of BDNF and NT-4/5 are not identical.  相似文献   

7.
Large numbers of neurons are eliminated by apoptosis during nervous system development. For instance, in the mouse dorsal root ganglion (DRG), the highest incidence of cell death occurs between embryonic days 12 and 14 (E12-E14). While the cause of cell death and its biological significance in the nervous system is not entirely understood, it is generally believed that limiting quantities of neurotrophins are responsible for neuronal death. Between E12 and E14, developing DRG neurons pass through tissues expressing high levels of axonal guidance molecules such as Semaphorin 3A (Sema3A) while navigating to their targets. Here, we demonstrate that Sema3A acts as a death-inducing molecule in neurotrophin-3 (NT-3)-, brain-derived neurotrophic factor (BDNF)- and nerve growth factor (NGF)-dependent E12 and E13 cultured DRG neurons. We show that Sema3A most probably induces cell death through activation of the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway, and that this cell death is blocked by a moderate increase in NGF concentration. Interestingly, increasing concentrations of other neurotrophic factors, such as NT-3 or BDNF, do not elicit similar effects. Our data suggest that the number of DRG neurons is determined by a fine balance between neurotrophins and Semaphorin 3A, and not only by neurotrophin levels.  相似文献   

8.
The ability of neurotrophin-4/5 (NT-4/5), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) to promote survival of postnatal rat vestibular ganglion neurons (VGNs) was examined in dissociated cell cultures. Of the four neurotrophins, NT-4/5 and BDNF were equally effective but more potent than NT-3 in promoting the survival of VGNs. In contrast, NGF showed no detectable effects. As expected, TrkB-IgG (a fusion protein of extracellular domain of TrkB and Fc domain of human immunoglobulin G) specifically inhibited the survival-promoting effects by NT-4/5 or BDNF and TrkC-IgG fusion protein completely blocked that of NT-3. Immunohistochemistry with TrkB, TrkA, and p75 antisera revealed that VGNs made TrkB and p75 proteins, but not TrkA protein. Ototoxic therapeutic drugs such as cisplatin and gentamicin often induce degeneration of hair cells and ganglion neurons in both auditory and vestibular systems that leads to impairment of hearing and balance. When cisplatin and gentamicin were added to the dissociated VGN culture in which the hair cells were absent, additional cell death of VGNs was induced, suggesting that the two ototoxins may have a direct neurotoxic effect on ganglion neurons in addition to their known toxicity on hair cells. However, if the cultures were co-treated with neurotrophins, NT-4/5, BDNF, and NT-3, but not NGF, prevented or reduced the neurotoxicity of the two ototoxins. Thus, the three neurotrophins are survival factors for VGNs and are implicated in the therapeutic prevention of VGN loss caused by injury and ototoxins. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are small, basic, secretory proteins that allow the survival of specific neuronal populations. In their biologically active form, after cleavage from their biosynthetic precursors, these three neurotrophic proteins, or neurotrophins, show about 50% amino acid identities. The genes coding for the neurotrophins are not only expressed during development, but also in the adult, in a variety of tissues including the central nervous system. In the adult brain, the hippocampal formation is the site of highest expression of the three neurotrophin genes. These genes are expressed in neurons, and the mRNA levels of two of them (NGF and BDNF) have been shown to be regulated by neurotransmitters. There are also convincing indications that the administration of NGF prevents the atrophy and death of axotomized cholinergic neurons in the adult central nervous system, and improves the performance of rats selected for their poor memory retention in simple behavioral tasks.  相似文献   

10.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

11.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are important for the regulation of survival and differentiation of distinct, largely non-overlapping populations of embryonic sensory neurons. We show here that the multifunctional cytokine transforming growth factor-β (TGF-β) fails to maintain sensory neurons cultured from embryonic day (E) 8 chick dorsal root ganglia (DRG), although DRG neurons are immunoreactive for the TGF-β receptor type II, which is essential for TGF-β signaling. However, in combination with various concentrations of NT-3 and NT-4, but not NGF, TGF-β3 causes a further significant increase in neuron survival. In DRG cell cultures treated with NGF, NT-3, and NT-4, a neutralizing antibody to TGF-β decreases neuron survival suggesting that endogenous TGF-β in these cultures affects the efficacies of neurotrophins. Consistent with this notion and a modulatory role of TGF-β in neurotrophin functions is the observation that TGF-β2 and-β3 immunoreactivities and TGF-β3 mRNA are located in embryonic chick DRG in close association with neurons from E5 onwards. We also show that leukemia inhibitory factor (LIF) significantly decreases NGF-mediated DRG neuron survival. Together, these data indicate that actions and efficacies of neurotrophins are under distinct control by TGF-β and LIF in vitro, and possibly also in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

12.
BACKGROUND: The neurotrophins, which include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6, are a family of proteins that play fundamental roles in the differentiation, survival and maintenance of peripheral and central neurons. Much research has focused on the role of neurotrophins as target-derived, retrogradely transported trophic molecules. Although there is recent evidence that BDNF and NT-3 can be transported in an anterograde direction along peripheral and central axons, there is as yet no conclusive evidence that these anterograde factors have direct post-synaptic actions. RESULTS: We report that BDNF travels in an anterograde direction along the optic nerve. The anterogradely transported BDNF had rapid effects on retinal target neurons in the superior colliculus and lateral geniculate nucleus of the brain. When endogenous BDNF within the developing superior colliculus was neutralised, the rate of programmed neuronal death increased. Conversely, provision of an afferent supply of BDNF prevented the degeneration of geniculate neurons after removal of their cortical target. CONCLUSIONS: BDNF released from retinal ganglion cells acts as a survival factor for post-synaptic neurons in retinal target fields.  相似文献   

13.
Neuroplasticity of the spinal cord following electroacupuncture (EA) has been demonstrated although little is known about the possible underlying mechanism. This study evaluated the effect of EA on expression of neurotrophins in the lamina II of the spinal cord, in cats subjected to dorsal rhizotomy. Cats received bilateral removal of L1–L5 and L7–S2 dorsal root ganglia (DRG, L6 DRG spared) and unilateral EA. They were sacrificed 7 days after surgery, and the L6 spinal segment removed and processed by immunohistochemistry and in situ hybridization histochemistry, to demonstrate the expression of neurotrophins. Significantly greater numbers of nerve growth factor (NGF) and neurotrophin-3 (NT-3) positive neurons, brain-derived neurotrophic factor (BDNF) immunoreactive varicosities and NT-3 positive neurons and glial cells were observed in lamina II on the acupunctured (left) side, compared to the non-acupunctured, contralateral side. Greater number of neurons expressing NGF mRNA was also observed on the acupunctured side. No signal for mRNA to BDNF and NT-3 was detected. The above findings demonstrate that EA can increase the expression of endogenous NGF at both the mRNA and protein level, and BDNF and NT-3 at the protein level. It is postulated that EA may promote the plasticity of the spinal cord by inducing increased expression of neurotrophins.  相似文献   

14.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   

15.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

16.
We report that stimulation inducing long-term potentiation (LTP) in the CA1 pyramidal cell layer of the hippocampus evokes significant increases in both BDNF and NT-3 mRNAs in CA1 neurons. No changes in BDNF or NT-3 mRNA levels were seen in the nonstimulated regions of the pyramidal cell layer or the dentate. No change was seen in the levels of NGF mRNA at the time point examined. These results suggest that relatively normal levels of activity may regulate region-specific neurotrophin levels in the hippocampus. Given that known effects of NGF (and presumably of BDNF and NT-3) include elevation of neurotransmitter levels, elevation of sodium channels, and promotion of axonal terminal sprouting, activity-associated changes in neurotrophin levels may play a role in regulating neural connections in the adult as well as the developing nervous system.  相似文献   

17.
The nerve growth factor (NGF) family of neurotrophins provides a substantial part of the normal trophic support for sensory neurons during development. Although these neurotrophins, which include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), continue to be expressed into adulthood, there is little evidence that they are survival factors for adult neurons. Here we have examined the age-dependent neurotrophic requirements of a specialized type of mechanoreceptive neuron, called a D-hair receptor, in the dorsal root ganglion (DRG). Studies using knockout mice have demonstrated that the survival of D-hair receptors is dependent upon both NT-3 and NT-4. Here, we show that the time period when D-hair receptors require these two neurotrophins is different. Survival of D-hair receptors depends on NT-3 early in postnatal development and NT-4 later in the mature animal. The age-dependent loss of D-hair neurons in older NT-4 knockout mice was accompanied by a large reduction (78%) in neurons positive for the NT-4 receptor (trkB) together with neuronal apoptosis in the DRG. This is the first evidence that sensory neurons have a physiological requirement for a single neurotrophin for their continued survival in the adult.  相似文献   

18.
Growth factor synergism and antagonism in early neural crest development.   总被引:8,自引:0,他引:8  
This review article focuses on data that reveal the importance of synergistic and antagonistic effects in growth factor action during the early phases of neural crest development. Growth factors act in concert in different cell lineages and in several aspects of neural crest cell development, including survival, proliferation, and differentiation. Stem cell factor (SCF) is a survival factor for the neural crest stem cell. Its action is neutralized by neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) through apoptotic cell death. In contrast, SCF alone does not support the survival of melanogenic cells (pigment cell precursors). They require the additional presence of a neurotrophin (NGF, BDNF, or NT-3). Fibroblast growth factor-2 (FGF-2) is an important promoter of proliferation in neuronal progenitor cells. In neural crest cells, fibroblast growth factor treatment alone does not lead to cell expansion but also requires the presence of a neurotrophin. The proliferative stimulus of the fibroblast growth factor - neurotrophin combination is antagonized by transforming growth factor beta-1 (TGFbeta-1). Moreover, TGFbeta-1 promotes the concomitant expression of neuronal markers from two cell lineages, sympathetic neurons and primary sensory neurons, indicating that it acts on a pluripotent neuronal progenitor cell. Moreover, the combination of FGF-2 and NT3, but not other neurotrophins, promotes expression or activation of one of the earliest markers expressed by presumptive sympathetic neuroblasts, the norepinephrine transporter. Taken together, these data emphasize the importance of the concerted action of growth factors in neural crest development at different levels and in several cell lineages. The underlying mechanisms involve growth-factor-induced dependence of the cells on other factors and susceptibility to growth-factor-mediated apoptosis.  相似文献   

19.
INTRODUCTION: Recent studies have shown that neurotrophins (NTs) are involved in inflammatory processes. Elevated plasma levels of NTs were found allergic diseases with the highest levels in allergic asthma. However, the exact cellular sources involved in the regulation and release of neurotrophins in allergic inflammation are still not well defined. OBJECTIVE: The aim of this study was to assess whether monocytes of allergic and non-allergic subjects produce, store and release the neurotrophins NGF, BDNF and NT-3. METHODS: Monocytes of allergic and non-allergic donors were purified by immunomagnetic selection. APAAP-staining for the presence of NTs and their receptors was performed. RT-PCR and Western blot evaluated the production and storage of NTs. Monocytes were incubated and supernatants were collected for measurement of neurotrophic factors after stimulation with lipopolysaccharide (LPS) as inflammatory stimulus. The neurotrophin content in lysates and cell culture supernatants was determined by ELISA. RESULTS: Human monocytes express the neurotrophins NGF, BDNF and NT-3 but also their specific receptors TrkA, TrkB and TrkC. RT-PCR amplification of isolated mRNA demonstrated expression of the examined neurotrophins. Proteins were detectable by Western blot. NTs were found in the monocyte lysates and supernatants at different levels in allergic and non-allergic donors. Cell stimulation with LPS leads to release of NGF and NT3. CONCLUSIONS: Monocytes, produce, store and release NGF, BDNF and NT-3. They are a possible source of elevated neurotrophin levels found in allergy and asthma.  相似文献   

20.
《The Journal of cell biology》1993,122(5):1053-1065
We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10- E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号