首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Coxiella burnetii directs the synthesis of a large parasitophorous vacuole (PV) required for replication. While some lysosomal characteristics of the PV have been described, the origin and composition of the PV membrane is largely undefined. Cholesterol is an essential component of mammalian cell membranes where it plays important regulatory and structural roles. Here we investigated the role of host cholesterol in biogenesis and maintenance of the C. burnetii PV in Vero cells. The C. burnetii PV membrane stained with filipin and was positive for the lipid raft protein flotillin-1, suggesting PV membranes are enriched in cholesterol and contain lipid raft microdomains. C. burnetii infection increased host cell cholesterol content by 1.75-fold with a coincident upregulation of host genes involved in cholesterol metabolism. Treatment with U18666A, lovastatin, or 25-hydroxycholesterol, pharmacological agents that inhibit cholesterol uptake and/or biosynthesis, altered PV morphology and partially inhibited C. burnetii replication. Complete inhibition of C. burnetii PV development and replication was observed when infected cells were treated with imipramine or ketoconazole, inhibitors of cholesterol uptake and biosynthesis respectively. We conclude that C. burnetii infection perturbs host cell cholesterol metabolism and that free access to host cholesterol stores is required for optimal C. burnetii replication.  相似文献   

3.
4.
Lipid rafts are enriched in cholesterol and sphingomyelin and are isolated on the basis of insolubility in detergents, such as Brij 98 and Triton X-100. Recent work by Holm et al. has shown that rafts insoluble in Brig 98 can be found in human immunodeficiency virus type 1 (HIV-1) virus-like particles, although it is not known whether raft-like structures are present in authentic HIV-1 and it is unclear whether a virion-associated raft-like structure is required for HIV replication. Independently, it was previously reported that virion-associated cholesterol is critical for HIV-1 infectivity, although the specific requirement of virion cholesterol in HIV-1 was not examined. In the present study, we have demonstrated that infectious wild-type HIV-1 contains Brij 98 rafts but only minimal amounts of Triton X-100 rafts. To directly assess the functional requirement of virion-associated rafts and various features of cholesterol on HIV-1 replication, we replaced virion cholesterol with exogenous cholesterol analogues that have demonstrated either raft-promoting or -inhibiting capacity in model membranes. We observed that variable concentrations of exogenous analogues are required to replace a defined amount of virion-associated cholesterol, showing that structurally diverse cholesterol analogues have various affinities toward HIV-1. We found that replacement of 50% of virion cholesterol with these exogenous cholesterol analogues did not eliminate the presence of Brij 98 rafts in HIV-1. However, the infectivity levels of the lipid-modified HIV-1s directly correlate with the raft-promoting capacities of these cholesterol analogues. Our data provide the first direct assessment of virion-associated Brij 98 rafts in retroviral replication and illustrate the importance of the raft-promoting property of virion-associated cholesterol in HIV-1 replication.  相似文献   

5.
High mobility group box protein 1 (HMGB1) is an abundant component of mammalian cells that can be released into extracellular milieu actively or by cells that undergo necrosis. Exposure of inflammatory and endothelial cells to HMGB1 leads to the release of cytokines, including TNF-alpha and IL-6. To evaluate the impact of exogenous HMGB1 on viral replication in HIV-1 infected cells, we studied models of latent and acute infection. Extracellular HMGB1 dose dependently increased HIV-1 replication in the monocytic cells, U1, which is an established model for studying latent HIV-1 infection. Dexamethasone, a known inhibitor of NF-kappaB signaling in U1 cells, inhibited HMGB1-induced stimulation of the viral production. Addition of HMGB1 to primary monocytic cells with active HIV-1 infection elicited the opposite effect, due to suppression of the viral replication. The mechanism of this unexpected finding was explained by an HMGB1-mediated increased release of chemokines (RANTES, MIP-1alpha, and MIP-1beta) that are known to inhibit HIV-1 replication. The stimulatory effect of the HMGB1 was not present when latently infected T-cells (ACH-2) were used as target cells. Our data suggest that extracellular HMGB1 has a dichotomic effect on the HIV-1 infection in monocytes but not in lymphocytes. Both activation of latent HIV-1 infection and inhibition of active replication can thus be seen in vitro.  相似文献   

6.
7.
Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT). Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs) and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process.  相似文献   

8.
Braaten D  Luban J 《The EMBO journal》2001,20(6):1300-1309
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein binds most members of the cyclophilin family of peptidyl-prolyl isomerases. Of 15 known human cyclophilins, cyclophilin A (CypA) has been the focus of investigation because it was detected in HIV-1 virions. To determine whether CypA promotes HIV-1 replication, we deleted the gene encoding CypA (PPIA) in human CD4(+) T cells by homologous recombination. HIV-1 replication in PPIA(-/-) cells was decreased and not inhibited further by cyclosporin or gag mutations that disrupt Gag's interaction with cyclophilins, indicating that no other cyclophilin family members promote HIV-1 replication. The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA(+/+) and PPIA(-/-) cells. Stable re-expression of CypA in PPIA(-/-) cells restored HIV-1 replication to an extent that correlated with steady-state levels of CypA. Finally, virions from PPIA(-/-) cells possessed no obvious biochemical abnormalities but were less infectious than virions from wild-type cells. These data formally demonstrate that CypA regulates the infectivity of HIV-1 virions.  相似文献   

9.
Vascular calcification impairs vessel compliance and increases the risk of cardiovascular events. We found previously that liver X receptor agonists, which regulate intracellular cholesterol homeostasis, augment PKA agonist- or high phosphate-induced osteogenic differentiation of vascular smooth muscle cells. Because cholesterol is an integral component of the matrix vesicles that nucleate calcium mineral, we examined the role of cellular cholesterol metabolism in vascular cell mineralization. The results showed that vascular smooth muscle cells isolated from LDL receptor null (Ldlr(-/-)) mice, which have impaired cholesterol uptake, had lower levels of intracellular cholesterol and less osteogenic differentiation, as indicated by alkaline phosphatase activity and matrix mineralization, compared with WT cells. PKA activation with forskolin acutely induced genes that promote cholesterol uptake (LDL receptor) and biosynthesis (HMG-CoA reductase). In WT cells, inhibition of cholesterol uptake by lipoprotein-deficient serum attenuated forskolin-induced matrix mineralization, which was partially reversed by the addition of cell-permeable cholesterol. Prolonged activation of both uptake and biosynthesis pathways by cotreatment with a liver X receptor agonist further augmented forskolin-induced matrix mineralization. Inhibition of either cholesterol uptake, using Ldlr(-/-) cells, or of cholesterol biosynthesis, using mevastatin-treated WT cells, failed to inhibit matrix mineralization due to up-regulation of the respective compensatory pathway. Inhibition of both pathways simultaneously using mevastatin-treated Ldlr(-/-) cells did inhibit forskolin-induced matrix mineralization. Altogether, the results suggest that up-regulation of cholesterol metabolism is essential for matrix mineralization by vascular cells.  相似文献   

10.
Interleukin-18 (IL-18) is a recently identified immunoregulatory cytokine expressed by activated macrophages, that induces production of interferon-gamma (IFN-gamma) and Th-1 development. Recently some investigators reported controversial in vitro data on IL-18 stimulation of HIV-1 replication in several cell lines. In the present study the effect of IL-18 on HIV replication in a human chronically HIV-1-infected lymphocytic T cell line (H9-V) was investigated. HIV-1 replication was determined by an immunoassay method in order to evaluate the content of p24 antigen in the cell culture supernatants. Stimulation of H9-V cells with IL-18 resulted in increased production of p24, especially at concentrations of 0.01 microg ml(-1) and 0.10 microg ml(-1). Moreover a significant and persistent IL-18 stimulation of HIV-1 replication was observed at a concentration of 0.01 microg ml(-1) during a 7-day period. Pre-treatment of IL-18 with a specific neutralizing monoclonal antibody significantly reduced HIV-1 replication. These experiments show that IL-18 promotes the increase of HIV-1 replication in human chronically-infected lymphocytic T cells and confirm the role of IL-18 as a proimflammatory cytokine in stimulating and maintaining HIV-1 replication during the course of the disease. In a successive set of experiments, since one of the main activities of IL-18 is the induction of IFN-gamma, we evaluated the effect of this biological modifier on H9-V cells. In particular, IFN-gamma shows a significant effect on cell replication and on reduction of CD4 and CD71 surface expression.  相似文献   

11.
Macrophages perform a central role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection and have been implicated as the cell type most prominent in the development of central nervous system impairment. In this study, we evaluated the effect of interaction between macrophages and endothelial cells on HIV-1 replication. Upregulation of HIV-1 replication was consistently observed in monocyte-derived macrophages (hereafter called macrophages) cocultured with either umbilical vein endothelial cells or brain microvascular endothelial cells. HIV-1 p24 antigen production of laboratory-adapted strains and patient-derived isolates was increased 2- to 1,000-fold in macrophage-endothelial cocultures, with little or no detectable replication in cultures containing endothelial cells only. The upregulation of HIV-1 in macrophage-endothelial cocultures was observed not only for viruses with the non-syncytium-inducing, macrophage-tropic phenotype but also for viruses previously characterized as syncytium inducing and T-cell tropic. In contrast, cocultures of macrophages with glioblastoma, astrocytoma, cortical neuronal, fibroblast, and placental cells failed to increase HIV-1 replication. Enhancement of HIV-1 replication in macrophage-endothelial cocultures required cell-to-cell contact; conditioned media from endothelial cells or macrophage-endothelial cocultures failed to augment HIV-1 replication in macrophages. Additionally, antibody to leukocyte function-associated antigen (LFA-1), a macrophage-endothelial cell adhesion molecule, inhibited the enhanced HIV-1 replication in macrophage-endothelial cell cocultures. Thus, these data indicate that macrophage-endothelial cell contact enhances HIV-1 replication in macrophages for both macrophage-tropic and previously characterized T-cell-tropic strains and that antibody against LFA-1 can block the necessary cell-to-cell interaction required for the observed upregulation. These findings may have important implications for understanding the ability of HIV-1 to replicate efficiently in tissue macrophages, including those in the brain and at the blood-brain barrier.  相似文献   

12.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

13.
HIV infection, through the actions of viral accessory protein Nef, impairs activity of cholesterol transporter ABCA1, inhibiting cholesterol efflux from macrophages and elevating the risk of atherosclerosis. Nef also induces lipid raft formation. In this study, we demonstrate that these activities are tightly linked and affect macrophage function and HIV replication. Nef stimulated lipid raft formation in macrophage cell line RAW 264.7, and lipid rafts were also mobilized in HIV-1-infected human monocyte-derived macrophages. Nef-mediated transfer of cholesterol to lipid rafts competed with the ABCA1-dependent pathway of cholesterol efflux, and pharmacological inhibition of ABCA1 functionality or suppression of ABCA1 expression by RNAi increased Nef-dependent delivery of cholesterol to lipid rafts. Nef reduced cell-surface accessibility of ABCA1 and induced ABCA1 catabolism via the lysosomal pathway. Despite increasing the abundance of lipid rafts, expression of Nef impaired phagocytic functions of macrophages. The infectivity of the virus produced in natural target cells of HIV-1 negatively correlated with the level of ABCA1. These findings demonstrate that Nef-dependent inhibition of ABCA1 is an essential component of the viral replication strategy and underscore the role of ABCA1 as an innate anti-HIV factor.  相似文献   

14.
15.
We conducted a phenotypic cDNA screening using a T cell line-based assay to identify human genes that render cells resistant to human immunodeficiency virus type 1 (HIV-1). We isolated potential HIV-1 resistance genes, including the carboxy terminal domain (CTD) of bromodomain-containing protein 4 (Brd4). Expression of GFP-Brd4-CTD was tolerated in MT-4 and Jurkat cells in which HIV-1 replication was markedly inhibited. We provide direct experimental data demonstrating that Brd4-CTD serves as a specific inhibitor of HIV-1 replication in T cells. Our method is a powerful tool for the identification of host factors that regulate HIV-1 replication in T cells.  相似文献   

16.
Human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1) may interact in the pathogenesis of AIDS. The placental syncytiotrophoblast layer serves as the first line of defense of the fetus against viruses. We analyzed the patterns of replication of HIV-1 and HCMV in singly an dually infected human term syncytiotrophoblast cells cultured in vitro. Syncytiotrophoblast cells exhibited restricted permissiveness for HIV-1, while HCMV replication was restricted at the level of immediate-early and early gene products in the singly infected cells. We found that the syncytiotrophoblasts as an overlapping cell population could be coinfected with HIV-1 and HCMV. HIV-1 replication was markedly upregulated by previous or simultaneous infection of the cells with HCMV, whereas prior HIV-1 infection of the cells converted HCMV infection from a nonpermissive to a permissive one. No simultaneous enhancement of HCMV and HIV-1 expression was observed in the dually infected cell cultures. Major immediate-early proteins of HCMV were necessary for enhancement of HIV-1 replication, and interleukin-6 production induced by HCMV and further increased by replicating HIV-1 synergized with these proteins to produce this effect. Permissive replication cycle of HCMV was induced by the HIV-1 tat gene product. We were unable to detect HIV-1 (HCMV) or HCMV (HIV-1) pseudotypes in supernatant fluids from dually infected cell cultures. Our results suggest that interactions between HIV-1 and HCMV in coinfected syncytiotrophoblast cells may contribute to the transplacental transmission of both viruses.  相似文献   

17.
Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4+ T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4+ T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.  相似文献   

18.
Human immunodeficiency virus-1 (HIV-1) exploits a number of host cellular factors for successful survival and propagation. The viral protein Nef plays an important role in HIV-1 pathogenesis by interacting with various cellular proteins. In the present work, we identified Cyclin K (CycK) as a novel Nef-interacting protein, and for the first time, we showed that CycK inhibits HIV-1 gene expression and replication in a Nef-dependent manner. The positive elongation factor b complex comprising cyclin-dependent kinase 9 (CDK9) and Cyclin T1 is a critical cellular complex required for viral gene expression and replication. Enhanced expression of CycK in the presence of Nef induced CycK-CDK9 binding, which prevented CDK9-Cyclin T1 complex formation and nuclear translocation of CDK9, resulting in inhibition of HIV-1 long terminal repeat-driven gene expression. Furthermore, this effect of CycK was not observed with Nef-deleted virus, indicating the importance of Nef in this phenomenon. Finally, silencing of CycK in HIV-1-infected cells resulted in increased translocation of CDK9 into the nucleus, leading to increased viral gene expression and replication. These data also suggest that endogenous CycK might act as an inhibitory factor for HIV-1 gene expression and replication in T-cells. Thus, our results clearly demonstrate that CycK utilizes HIV-1 Nef protein to displace CycT1 from the positive elongation factor b complex, resulting in inhibition of HIV-1 gene expression and replication.  相似文献   

19.
M Kubo  T Ohashi  M Fujii  S Oka  A Iwamoto  S Harada    M Kannagi 《Journal of virology》1997,71(10):7560-7566
CD8+ T lymphocytes of asymptomatic human immunodeficiency virus type 1 (HIV-1) carriers (AC) suppress HIV-1 replication in vitro. Failure of host defense mechanisms and increased virus proliferation are associated with disease progression. The exact mechanisms inducing these changes at the advanced stage of the disease are still obscure. In this study, we searched for experimental conditions favoring the abrogation of the suppression of viral replication in peripheral blood mononuclear cells (PBMC) of AC by using various pharmacological and biological probes modifying cell activation. Among such agents, staphylococcal enterotoxin B (SEB) and phorbol 12-myristate 13-acetate (PMA) markedly increased otherwise low levels of HIV-1 replication in cultures of phytohemagglutinin-stimulated AC PBMC following in vitro HIV-1 LAI infection. A similar but less pronounced virus induction was also observed in macrophage-tropic HIV-1. Individual pretreatment of CD4+ and CD8+ PBMC fractions with these agents caused a reduction in CD8+ cell proliferation and enhanced HIV-1 replication in CD4+ cells. SEB- and PMA-mediated augmentation of HIV-1 replication in AC PBMC was significantly blocked by neutralizing antibody to tumor necrosis factor-alpha (TNF-alpha), although recombinant TNF-alpha alone failed to reproduce the effects of SEB or PMA. Our results suggest that the induction of TNF-alpha may be one of the mechanisms that overcomes the CD8+-induced suppression of HIV-1 replication in AC and that it may induce HIV-1 replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号