首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
BackgroundOxygen toxicity is a major cause of lung injury. The base excision repair pathway is one of the most important cellular protection mechanisms that responds to oxidative DNA damage. Lesion-specific DNA repair enzymes include hOgg1, hMYH, hNTH and hMTH.MethodsThe above lesion-specific DNA repair enzymes were expressed in human alveolar epithelial cells (A549) using the pSF91.1 retroviral vector. Cells were exposed to a 95% oxygen environment, ionizing radiation (IR), or H2O2. Cell growth analysis was performed under non-toxic conditions. Western blot analysis was performed to verify over-expression and assess endogenous expression under toxic and non-toxic conditions. Statistical analysis was performed using the paired Student''s t test with significance being accepted for p < 0.05.ResultsCell killing assays demonstrated cells over-expressing hMYH had improved survival to both increased oxygen and IR. Cell growth analysis of A549 cells under non-toxic conditions revealed cells over-expressing hMYH also grow at a slower rate. Western blot analysis demonstrated over-expression of each individual gene and did not result in altered endogenous expression of the others. However, it was observed that O2 toxicity did lead to a reduced endogenous expression of hNTH in A549 cells.ConclusionIncreased expression of the DNA glycosylase repair enzyme hMYH in A549 cells exposed to O2 and IR leads to improvements in cell survival. DNA repair through the base excision repair pathway may provide an alternative way to offset the damaging effects of O2 and its metabolites.  相似文献   

2.

Background

In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair.

Objective

The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis.

Methods

Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation.

Results

Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models.

Conclusion

This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.  相似文献   

3.

Introduction

The goals of this study were to examine the oxemic regulation of Wnt signaling to explore whether Wnt signaling accelerates the age-related degeneration of nucleus pulposus cells, and if so, to define the mechanism underlying this effect. We investigated the expression of Klotho, a newly identified antiaging gene, and whether its regulation is attributable to the suppression of Wnt signaling.

Methods

Rat nucleus pulposus cells were cultured under normoxic (21% O2) or hypoxic (2% O2) conditions, and the expression and promoter activity of Wnt signaling and Klotho were evaluated. The effect of Klotho protein was examined with transfection experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, senescence-associated ??-galactosidase staining, and cell-cycle analysis. To determine the methylation status of the Klotho promoter region, bisulfite genomic sequencing analysis was performed. Its relation with the activation of Wnt signaling was assessed. We also examined whether the expression of Klotho could block the effects of pathological Wnt expression in nucleus pulposus cells.

Results

Nucleus pulposus cells exhibited increased ??-catenin mRNA and protein under the hypoxic condition. Klotho protein was expressed in vivo, and protein and messenger RNA expression decreased under the hypoxic condition. Klotho treatment decreased cell proliferation and induced the quiescence of nucleus pulposus cells. In addition, Klotho treatment inhibited expression of ??-catenin gene and protein compared with untreated control cells.

Conclusions

These data indicate that Wnt signaling and Klotho form a negative-feedback loop in nucleus pulposus cells. These results suggest that the expression of Klotho is regulated by the balance between upregulation and downregulation of Wnt signaling.  相似文献   

4.

Background

Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis.

Methods

Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR.

Results

V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1).

Conclusion

Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5.  相似文献   

5.
6.

Key message

H 2 O 2 is necessary to elicit rhizogenic action of auxin. Activities of specific catalase and manganese superoxide dismutase forms mark roots development.

Abstract

Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots on medium containing 2,4-dichlorophenoxyacetic acid. Explants became competent to respond to the rhizogenic action of auxin on day 3 of culture, when hydrogen peroxide content in cultured tissue was the highest. l-Ascorbic acid added to the medium at 5 μM lowered the H2O2 level, inhibited rhizogenesis and induced non-regenerative callus, suggesting that certain level of H2O2 is required to promote root initiation. Coincident with the onset of rhizogenic determination, meristemoids formed at the periphery of the hypocotyl stele and the activity of the manganese form of superoxide dismutase, MnSOD-2 was induced. Once induced, MnSOD-2 activity was maintained through the post-determination phase of rooting, involving root growth. MnSOD-2 activity was not found in non-rhizogenic explants maintained in the presence of AA. Analyses of the maximum photochemical efficiency of photosystem II and the oxygen uptake rate revealed that the explants were metabolically arrested during the predetermination stage of rhizogenesis. Respiratory and photosynthetic rates were high during root elongation and maturation. Changes in catalase and peroxidase activities correlated with fluctuations of endogenous H2O2 content throughout rhizogenic culture. Expression of a specific CAT-2 form accompanied the post-determination stage of rooting and a high rate of carbohydrate metabolism during root growth. On the other hand, the occurrence of MnSOD-2 activity did not depend on the metabolic status of explants. The expression of MnSOD-2 activity throughout root development seems to relate it specifically to root metabolism and indicates it as a molecular marker of rhizogenesis in M. crystallinum.  相似文献   

7.

Purpose and experimental design

Although an increase in regulatory T cells (Tregs) is observed in tumor microenvironments, the underlying mechanism is not fully clarified. Since it was suggested that Tregs showed a lower sensitivity toward oxidative stress in comparison with conventional T cells, in the present study, we investigated the H2O2 production and apoptosis of Tregs in gastric and esophageal cancer tissues, employing flow cytometric analysis using fresh samples (n = 93) and immunohistochemical analysis (n = 203).

Results

The increased tumor-infiltrating Tregs coexisted with elevated H2O2 production according to disease progression. The grade of apoptosis in Tregs was less pronounced than that in conventional T cells, and there was a positive correlation between H2O2 production and the grade of apoptosis in conventional T cells, while there was no correlation between H2O2 production and the grade of apoptosis in Tregs. Moreover, Tregs were less sensitive to H2O2-induced apoptosis compared with conventional T cells in vitro.

Conclusions

We have demonstrated that the increased prevalence of tumor-infiltrating Tregs closely related to their lower sensitivity to H2O2-induced apoptosis.  相似文献   

8.

Background

FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2.

Results

We have developed a synthetic metabolic pathway in E. coli that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O2 levels eliminate growth. This pathway forms the basis for a genetic selection for O2 tolerance. Genetically selected hydrogenases did not show improved stability in O2 and in many cases had lost H2 production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer.

Conclusions

Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient in vivo assays to aid in the engineering of synthetic H2 metabolism. Our results also indicate a H2-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H2-activating catalysts.  相似文献   

9.

Background

Melatonin, a hormone-like substance involved in the regulation of the circadian rhythm, has been demonstrated to protect cells against oxidative DNA damage and to inhibit tumorigenesis.

Results

In the current study, we investigated the effect of melatonin on DNA strand breaks using the alkaline DNA comet assay in breast cancer (MCF-7) and colon cancer (HCT-15) cell lines. Our results demonstrated that cells pretreated with melatonin had significantly shorter Olive tail moments compared to non-melatonin treated cells upon mutagen (methyl methanesulfonate, MMS) exposure, indicating an increased DNA repair capacity after melatonin treatment. We further examined the genome-wide gene expression in melatonin pretreated MCF-7 cells upon carcinogen exposure and detected altered expression of many genes involved in multiple DNA damage responsive pathways. Genes exhibiting altered expression were further analyzed for functional interrelatedness using network- and pathway-based bioinformatics analysis. The top functional network was defined as having relevance for “DNA Replication, Recombination, and Repair, Gene Expression, [and] Cancer”.

Conclusions

These findings suggest that melatonin may enhance DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways.  相似文献   

10.

Background

Major genomic surveillance mechanisms regulated in response to DNA damage exist at the G1/S and G2/M checkpoints. It is presumed that these delays provide time for the repair of damaged DNA. Cells have developed multiple DNA repair pathways to protect themselves from different types of DNA damage. Oxidative DNA damage is processed by the base excision repair (BER) pathway. Little is known about the BER of ionizing radiation-induced DNA damage and putative heterogeneity of BER in the cell cycle context. We measured the activities of three BER enzymes throughout the cell cycle to investigate the cell cycle-specific repair of ionizing radiation-induced DNA damage. We further examined BER activities in G2 arrested human cells after exposure to ionizing radiation.

Results

Using an in vitro incision assay involving radiolabeled oligonucleotides with specific DNA lesions, we examined the activities of several BER enzymes in the whole cell extracts prepared from synchronized human HeLa cells irradiated in G1 and G2 phase of the cell cycle. The activities of human endonuclease III (hNTH1), a glycosylase/lyase that removes several damaged bases from DNA including dihydrouracil (DHU), 8-oxoguanine-DNA glycosylase (hOGG1) that recognizes 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) lesion and apurinic/apyrimidinic endonuclease (hAPE1) that acts on abasic sites including synthetic analog furan were examined.

Conclusion

Overall the repair activities of hNTH1 and hAPE1 were higher in the G1 compared to G2 phase of the cell cycle. The percent cleavages of oligonucleotide substrate with furan were greater than substrate with DHU in both G1 and G2 phases. The irradiation of cells enhanced the cleavage of substrates with furan and DHU only in G1 phase. The activity of hOGG1 was much lower and did not vary within the cell cycle. These results demonstrate the cell cycle phase dependence on the BER of ionizing radiation-induced DNA damage. Interestingly no evidence of enhanced BER activities was found in irradiated cells arrested in G2 phase.  相似文献   

11.

Background

CpG-oligonucleotides (CpG-ODN), which induce signaling through Toll-like receptor 9 (TLR9), are currently under investigation as adjuvants in therapy against infections and cancer. CpG-ODN function as Th-1 adjuvants and are able to activate dendritic cells. In humans TLR9 has been described to be strongly expressed in B-lymphocytes, monocytes, plasmacytoid dendritic cells and at low levels in human respiratory cells. We determined whether a direct interaction of bacterial DNA with the tumor cells themselves is possible and investigated the expression and function of TLR9 in human malignant solid tumors and cell lines. TLR9 expression by malignant tumor cells, would affect treatment approaches using CpG-ODN on the one hand, and, on the other hand, provide additional novel information about the role of tumor cells in tumor-immunology.

Methods

The expression of TLR9 in HOPE-fixed non-small lung cancer, non-malignant tissue and tumor cell lines was assessed using immunohistochemistry, confocal microscopy, in situ hybridization, RT-PCR and DNA-sequencing. Apoptosis and chemokine expression was detected by FACS analysis and the Bio-Plex system.

Results

We found high TLR9 signal intensities in the cytoplasm of tumor cells in the majority of lung cancer specimens as well as in all tested tumor cell lines. In contrast to this non-malignant lung tissues showed only sporadically weak expression. Stimulation of HeLa and A549 cells with CpG-ODN induced secretion of monocyte chemoattractant protein-1 and reduction of spontaneous and tumor necrosis factor-alpha induced apoptosis.

Conclusions

Here we show that TLR9 is expressed in a selection of human lung cancer tissues and various tumor cell lines. The expression of functionally active TLR9 in human malignant tumors might affect treatment approaches using CpG-ODN and shows that malignant cells can be regarded as active players in tumor-immunology.  相似文献   

12.
Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity.  相似文献   

13.

Background

Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.

Results

Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.

Conclusion

We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.  相似文献   

14.

Background

Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP.

Results

WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector.

Conclusions

The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1.  相似文献   

15.
A novel series of naphthalimide polyamine conjugates were designed, synthesized and evaluated for in vitro antiproliferative activity against human leukemia (Jurkat), human cervical adenocarcinoma (HeLa), human breast adenocarcinoma (MCF-7) and human lung adenocarcinoma (A549) cell lines. From the six derivatives, the new I1 and A3 exhibited highest antiproliferative activity with the IC50 values of 5.67–11.02 μmol·L?1. Cell cycle analysis of Jurkat cells exposed to I1 at a concentration of 30 μmol × L?1 for 24 h exhibited a mild increase in S and G2/M fraction caused by accumulation of cells. This arrest was followed by an increase in sub-G0/G1 after 48 h of incubation. Jurkat cells exposed to A3 at a concentration of 30 μmol × L?1 for 24 h showed an increase in G0/G1 fraction and after 48 h an increase in G2/M fraction followed by an increase in sub-G0/G1 after 72 h of incubation. Moreover, the A3 compound was observed to displace the intercalating agent ethidium bromide from calf thymus DNA using fluorescence spectroscopy. The apparent binding constant was estimated to be 3.1 × 106 M?1 what indicates non-intercalating mode of DNA binding. On the other hand, we found no inhibitory effect of studied compounds on topoisomerase I and topoisomerase II activity. Finally, the localization of these compounds in the cells due to their inherent fluorescence was investigated with the fluorescence microscopy. Our results suggest that the naphthalimide polyamine conjugates rapidly penetrate to the cancer cells. Further studies are necessary to investigate the precise mechanism of action and to find out the relationship between the structure, character and position of substituents of naphthalimide polyamine conjugates and their biological activities.  相似文献   

16.

Aims

Responses of typical wetland plant Acorus tatarinowii to diesel stress were investigated to provide basis of ecological monitoring system and phytoremediation for diesel-contaminated wetland.

Methods

Greenhouse experiments were established to determine the germinability of seedlings, hydrogen peroxide in leaves, and DNA damage in roots exposed to a range of potentially phytotoxic diesel.

Results

The presence of diesel did not benefit the growth of A. tatarinowii. The germination ratio and germination rate decreased with the increase of diesel concentration, both the lowest value appeared when the concentration of diesel was 10,000 mg?kg?1. The lowest diesel concentration (2,000 mg?kg?1) in the soil significantly reduced the length, average diameter, and projected area of root, especially on the stress of the higher diesel concentration (4,000, 8,000, and 10,000 mg?kg?1). Furthermore, H2O2 concentration in leaves rose with the increasing concentration of diesel. However, no DNA oxidative damage to root was observed in our experiment.

Conclusions

Diesel exposure significantly inhabited the seed germination, root elongation, and seedlings growth of A. tatarinowii. Diesel stress caused the accumulation of H2O2 in the leaves of A. tatarinowii.  相似文献   

17.

Background

Patients with asthma demonstrate circadian variations in the airway inflammation and lung function. Pinealectomy reduces the total inflammatory cell number in the asthmatic rat lung. We hypothesize that melatonin, a circadian rhythm regulator, may modulate the circadian inflammatory variations in asthma by stimulating the chemotaxins expression in the lung epithelial cell.

Methods

Lung epithelial cells (A549) were stimulated with melatonin in the presence or absence of TNF-α(100 ng/ml). RANTES (Regulated on Activation Normal T-cells Expressed and Secreted) and eotaxin expression were measured using ELISA and real-time RT-PCR, eosinophil chemotactic activity (ECA) released by A549 was measured by eosinophil chemotaxis assay.

Results

TNF-α increased the expression of RANTES (307.84 ± 33.56 versus 207.64 ± 31.27 pg/ml of control, p = 0.025) and eotaxin (108.97 ± 10.87 versus 54.00 ± 5.29 pg/ml of control, p = 0.041). Melatonin(10-10 to 10-6M) alone didn't change the expression of RNATES (204.97 ± 32.56 pg/ml) and eotaxin (55.28 ± 6.71 pg/ml). However, In the presence of TNF-α (100 ng/ml), melatonin promoted RANTES (410.88 ± 52.03, 483.60 ± 55.37, 559.92 ± 75.70, 688.42 ± 95.32, 766.39 ± 101.53 pg/ml, treated with 10-10, 10-9, 10-8, 10-7,10-6M melatonin, respectively) and eotaxin (151.95 ± 13.88, 238.79 ± 16.81, 361.62 ± 36.91, 393.66 ± 44.89, 494.34 ± 100.95 pg/ml, treated with 10-10, 10-9, 10-8, 10-7, 10-6M melatonin, respectively) expression in a dose dependent manner in A549 cells (compared with TNF-α alone, P < 0.05). The increased release of RANTES and eotaxin in A549 cells by above treatment were further confirmed by both real-time RT-PCR and the ECA assay.

Conclusion

Taken together, our results suggested that melatonin might synergize with pro-inflammatory cytokines to modulate the asthma airway inflammation through promoting the expression of chemotaxins in lung epithelial cell.  相似文献   

18.
19.

Background

After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ.

Results

We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway.

Conclusions

This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.  相似文献   

20.

Background

Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population.

Methods

EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells).

Results

Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor.

Conclusion

PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号