首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
Water deprivation (WD) decreased the serotonin (5-HT) level and significantly increased the 5-hydroxyindoleacetic acid (5-HIAA) in the rat midbrain and hypothalamus, the catabolic 5-HIAA/5-HT ratio increasing three-fold. Hydration (H) produced a moderate increase in the 5-HT and 5-HIAA levels in the hypothalamus with no changes in the 5-HIAA/5-HT ratio. Hydration exerted no significant effect upon the 5-HT level and metabolism in the midbrain. A two-fold increase of corticosterone concentration in water deprivation and its decrease in hydration were shown to occur in peripheral blood plasma.  相似文献   

2.
Single administration of lithium hydroxybutyrate (10 mg/kg) to rabbits decreased serotonin and 5-hydroxyindoleacetic acid (5-HIAA) content in the caudate nucleus. The drug administration for 8 days is accompanied by mediator accumulation in the cortex, caudate nucleus, tonsils, hypothalamus, thalamus, and midbrain with parallel reduction in 5-HIAA level in these structures. 15 days of lithium hydroxybutyrate administration lead to the increase of serotonin and 5-HIAA concentration, while 28 days of administration reduced the content of mediator and its metabolite.  相似文献   

3.
The effects of novel or relevant (a single exposure to experimental chamber) and irrelevant (20 exposures to experimental chamber) stimuli on the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the frontal cortex, striatum, and nucleus accumbens in the left and right hemispheres were studied in male and female rats. It was found that 5-HT and 5-HIAA contents in the frontal cortex changed in response to neither relevant nor irrelevant stimuli. However, there were hemispheric difference in 5-HT and 5-HIAA in the frontal cortex of intact animals. The level of 5-HT in males and the level of 5-HIAA in females were higher in the left frontal cortex. In females, the level of 5-HIAA in the left striatum decreased in response to the novel stimulus. Sex differences in: a) 5-HT metabolism (increase in the level of 5-HIAA in males and increase in 5-HT in females) and b) lateralization (the striatal 5-HT metabolism in males changed bilaterally and only in the left hemisphere in females) were observed in reactions to irrelevant stimuli. Both in male and female rats, serotonin content in the nucleus accumbens changed only in response to the irrelevant stimuli. The 5-HT level increased in the left and right hemispheres independently of sex, but hemispheric difference was revealed only in females, in which the serotonin level was higher in the left nucleus accumbens. It is concluded that serotonergic neurotransmitter mechanisms are involved in hemispheric and sex differences in selective attention.  相似文献   

4.
The development of submissive behaviour in C57BL/6J mice in the sensory contact model was associated with an increase in the content of serotonin (5-HT) in the amygdala, hippocampus, dopaminergic nuclei A11, A10, A9, as well as in the caudate nucleus and hypothalamus after 10 and 20 days of confrontations compared to the controls. The level of 5-HT metabolite 5-hydroxyindolacetic acid (5-HIAA) was significantly higher in the most structures examined after 20 daily encounters as compared to animals with experience of 10 confrontations. The time course of submission over 10 or 20 days resulted in an increase of 5-HIAA/5-HT ratio in the midbrain nucleus raphe, nucleus accumbens, A9 and hypothalamus. In mice immunised on the 10th or 20th day of confrontations, the immune response inhibition was observed while its level remained unchanged after more prolonged confrontations (40 days). Thus, the experience of defeats during 10 days shown to be accompanied with an activation of 5-HT system in a number of the brain structures, produced immunosuppression. With increasing number of confrontations the ratio 5-HIAA/5-HT was decreased in the same structures and a tendency to the immune response elevation appeared.  相似文献   

5.
Experimental acute liver ischemia in pigs induces an increment in plasma free tryptophan with decreased total tryptophan. Brain tryptophan is elevated in all brain areas. A slight, but significant increase of brain serotonin is demonstrated in the striatum only, while 5-HIAA (5-hydroxyindoleacetic acid) is significantly lower in the hypothalamus. Other brain areas do not show significant changes in serotonin and 5-HIAA levels. Neither the high plasma free tryptophan levels, nor the decreased sum of neutral competitive amino acids are consistent with such an elevation of brain tryptophan. Hemodialysis was carried out with two different kinds of membranes: cuprophan (with an efficient removal of molecules up to molecular weight 1300) and AN 69 polyacrylonitrile (efficient removal up to 15,000). Ammonia and aminoacid clearance are similar for both membranes. After AN 69, plasmatic free tryptophan and brain tryptophan are lower than after liver devascularization, but still higher than normal. Serotonin significantly increases in the cortex, midbrain and hypothalamus without concomitant rise of 5-HIAA levels. After cuprophan hemodialysis, plasma total tryptophan is lower than in normal and even comatose animals, whereas free tryptophan is normal. Intracerebral tryptophan is similar to AN 69 dialysed animals, but in the hypothalamus it is similar to nondialysed animals. Brain serotonin levels are not modified. 5-HIAA decreases in the hypothalamus. This finding suggests that middle molecules (which are not cleared out with cuprophan hemodialysis) are involved in the intracerebral transfer of tryptophan and the metabolism of serotonin, mainly in the hypothalamus.  相似文献   

6.
Effects of novel or relevant (a single exposure to experimental chamber) and irrelevant (20 exposures to experimental chamber) stimuli on the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the left and right hippocamp and amygdala were studied in male and female rats. It was found that hemispheric specificity of 5-HT metabolism in hippocampus and amygdala depended on sex and novelty of information. In male rats, the hippocampal level of 5-HT in response to the novel stimulus increased in the left hemisphere, and the 5-HIAA hippocampal level increased bilaterally in response to irrelevant stimulus. In females, an increase in 5-HT and/or 5-HIAA levels was observed only in the left hippocampus in response both to relevant and irrelevant stimuli. In the amygdala, a hemispheric asymmetry of the 5-HT involvement, due to right-hemispheric changes in 5-HT metabolism, was observed only in male rats. In females, an increase in 5-HT level was found in the left and right amygdalas in response to irrelevant stimulus. These data suggest that serotonergic neurotransmitter mechanisms are an important factor which determines hemispheric and sex differences in selective attention.  相似文献   

7.
The action of 1.0 and 10.0 mg/kg (i.p.) of corticosterone on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents and on serotonin turnover, measured by an MAO-inhibitor method, was studied at 30 and 120 min after administration. A 1.0 mg/kg dose of corticosterone increased the serotonin content and turnover in the hypothalamus and mesencephalon 30 min after administration; however, it was ineffective on dorsal hippocampus and frontal and parietal cortex. 5-HIAA content did not change significantly in any of the brain areas studied. A 10.0 mg/kg dose of corticosterone decreased the serotonin content and turnover in the hypothalamus and mesencephalon; it was ineffective in other brain areas investigated. 5-HIAA content significantly decreased in the hypothalamus while it increased in the mesencephalon and dorsal hippocampus. In the parietal and frontal cortex, 5-HIAA content did not change following administration of 10.0 mg/kg of corticosterone. At 120 min after corticosterone administration, neither 5-HT content and turnover nor 5-HIAA content showed any change in the brain areas investigated. The results suggest that corticosteroids might change the activity of the brain serotoninergic system in a dose- and time-dependent manner, and in this way the serotoninergic system might play an important role in mediation of the corticosteroid effect exerted on brain function.  相似文献   

8.
Estrus female behind holed transparent partition produced sexual motivation and sexual arousal in males. It was manifested in behavioral changes (an increase in time spent near the partition) and the testosterone level augmentation in blood. Female mice were exposed to stress (1 h/day restraint) in the last week of gestation. Prenatal stress was shown to decrease the blood corticosterone level as well as to diminish sexual motivation and sexual arousal in adult male mice. Estrus female exposure produced a lesser behavioral response and a lesser testosterone level augmentation. No changes in weight of testicles, seminal vesicles or adrenal glands were found, but preputial gland weight increased. In prenatally stressed males, a female preference decrease and a male preference increase were revealed in the partner preference test. These data suggest that prenatal stress decreases sexual motivation in males and leads to clear predisposition to homosexuality, although it does not produce complete inversion of sexual orientation.  相似文献   

9.
An investigation was made into the effects of hyperammonemia on the metabolism of brain serotonin (5-HT). The animal model used was the sparse fur (spf) mouse, which possesses an inborn error of the urea cycle, i.e. an abnormal form of ornithine transcarbamylase. Several indoles were measured in brain and plasma using liquid chromatography with electrochemical detection coupled to an u.v. detection (LCEC-u.v.). In the mutant mice, plasma total tryptophan (TRP) was higher when compared with the controls, while plasma free-TRP portion was unchanged. In these animals, brain TRP was increased whilst the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels were significantly higher in the hypothalamus and midbrain. Experiments with NSD-1015 (100 mg/kg i.p.) indicated that the 5-hydroxytryptophan (5-HTP) synthesis rate was increased in the hyperammonemic mice. Pargyline experiments (100 mg/kg i.p.) confirmed the enhanced brain 5-HT turnover rate in the spf mice. In addition, these experiments led to the conclusion that hyperammonemia does not affect the various rate constants. After administration of NSD-1015, TRP level slightly increased in the spf mouse brains, while it was stationary in those of the controls. This result could indicate an increased activity of hepatic TRP-pyrrolase in the hyperammonemic mice. Valine (VAL) administration (200 mg/kg i.p.) reduced brain TRP content in the two kinds of mice, but its effect was of shorter duration in the spf when compared with the control. Comparison of brain tryptamine level indicated a slight but not significant increase in the mutant mice. The data reported here indicate that hyperammonemia may affect peripheral TRP metabolism with consequences upon brain 5-HT synthesis, which could promote certain neurologic disorders.  相似文献   

10.
We have shown in our laboratory that cat's and rat's sleep disturbances are produced by 24 h of ozone (O3) exposure, indicating that the central nervous system is affected by this gas. To demonstrate the probable changes in brain neurotransmitters, we evaluated the monoamine contents of the midbrain and striatum of rats exposed to 1 part per million O3 for 1 or 3 hours periods. The results were compared with rats exposed to fresh air and to those exposed to 3 hours of O3 followed by 1 or 3 hours of fresh air. We found a significant increase in dopamine (DA) and its metabolites noradrenaline (NA) and 3,4 dihydroxyphenylacetic acid (DOPAC), as well as an increase in the 5-hydroxyindolacetic acid (5-HIAA) contents of the striatum. There were no changes in homovanillic acid (HVA) and serotonin (5-HT) levels during O3 exposure. Additionally, an increase in DA, NA and 5-HIAA in the midbrain during O3 exposure was observed. Turnover analysis revealed that DA increased more than its metabolites in both the midbrain and striatum. However, the metabolite of 5-HT, i.e. 5-HIAA, increased more than its precursor, this reaching statistical significance only in the midbrain. These findings demonstrate that O3 or its reaction products affect the metabolism of major neurotransmitter systems as rapidly as after 1 h of exposition.  相似文献   

11.
Abstract: HPLC determination of histamine, serotonin, dopamine, and noradrenaline in the brain tissue of rats with portocaval anastomoses (PCA) has revealed a selective increase in histamine concentration. In the posterior hypothalamus, the steady-state level of the amine metabolites showed an inverse pattern; N-tele -methylhistamine(t-MeHA), as estimated by gas chromatography-mass spectrometry, was not changed significantly by portocaval shunting, whereas 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid were more than doubled. Interestingly, the net increase in t-MeHA concentration in response to pargyline (80 mg/kg i.p.) was almost the same for PCA and sham-operated rats. This implies that the great enhancement of the histamine level in this area might be a consequence of the persistent stimulation of its synthesis and the unchanged activity of histaminergic neurons. In the rest of the brain, on the other hand, the steady-state level of t-MeHA was higher after PCA (3.8-fold), as were the levels of 5-HIAA and homovanillic acid. Surprisingly, t-MeHA remained unchanged after monoamine oxidase blockade. Of the pargyline-induced alterations in the concentrations of indoles and catechols, the most pronounced were those in the serotonin level; serotonin was elevated more than twofold in hypothalamus and more than 12-fold in the rest of the brain, with a concomitant 80% decrease in 5-HIAA. The dopamine and, to a much smaller extent, noradrenaline levels were also increased, and the levels of homovanillic acid and 3,4-dihydroxyphenylacetic acid fell below the detection limit. The study suggests that at least two different mechanisms operate in the brains of PCA rats to counteract the excessive synthesis of neuromediators, e.g., increased deposition and increased metabolism.  相似文献   

12.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

13.
The content of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), monoamine oxidase (MAO) activity and kinetic parameters (K(m) and Vmax) for the reaction of 5-HT deamination, were examined in various regions of the rat brain after repeated presentation of a contextual stimulus. Habituation to the stimulus was accompanied by an increase of 5-HT metabolism and active transport of 5-HIAA in the amygdala, striatum and midbrain, while these changes were not found in the prefrontal cortex and hippocampus. Kinetic studies have revealed that the enhancement of 5-HT deamination by MAO in the brain structures was mediated by different catalytic mechanisms. A significant decrease in K(m) value for 5-HT deamination in the amygdala indicated an increase in the affinity of enzyme towards 5-HT. In the striatum the enhanced MAO activity was provided by increasing maximal rate of 5-HT deamination. It is concluded that an activation of presynaptic mechanisms of the serotonergic transmission in the amygdala and striatum is involved in the inhibition of biological significance and attention to repeated presentation of stimulus.  相似文献   

14.
Loeffler  D.A.  LeWitt  P.A.  Juneau  P.L.  Camp  D.M.  DeMaggio  A.J.  Havaich  M.K.  Milbury  P.E.  Matson  W.R. 《Neurochemical research》1998,23(12):1521-1525
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

15.
Norway rats have been selected during 20 generations by the absence of aggressive reaction to man (tamed rats). From 7 up to 20th generations of selection, different forms of aggressive behaviour (reaction to glove, intermale, shock-induced aggression and predatory aggression) were studied, and the level of noradrenaline, serotonin and its metabolite 5-hydroxyindoleacetic acid was determined in the brain. In the absence of aggressive reaction to glove in tamed rats, the shock-induced aggression considerably decreased while the predatory aggressiveness (mouse-killing behaviour) and intermale aggressiveness did not change. Beginning from 15-16th generation of selection, a higher level of the 5-hydroxyindoleacetic acid in the hypothalamus was established, in the 20th generation an increased content of serotonin was revealed in the hypothalamus and the midbrain. In some generations of selection an increased level of noradrenaline in the hypothalamus in comparison to wild rats was observed. A conclusion is made that the selection of animals by taming unequally influences different kinds of aggressiveness and is accompanied by inherited consolidated reorganization of the monoamine brain systems.  相似文献   

16.
The effects of 100g melatonin injection at postnatal day 5 (PD 5) on the development of the central serotonergic systems in male and female rats were investigated. The contents of serotonin (5-HT) and 5-hydroxy-3-indolacetic acid (5-HIAA) were measured in several extra-hypothalamic regions at 3, 10 and 42 weeks of age. The neonatal melatonin administration increased both 5-HT and 5-HIAA levels in the striatum throughout the examined period. In the hippocampus, an increase in 5-HIAA contents by neonatal melatonin administration was found at 3 weeks but not 10 or 42 weeks of age. There were no significant differences in the effects of melatonin between male and female rats. These results indicated that exogenous melatonin administration during the early neonatal period influenced the development of the serotonergic systems in extrahypothalamic regions including the hippocampus and the striatum.  相似文献   

17.
The content of serotonin and 5-hydroxy-indole-acetic acid (5-HIAA) was determined in the brain stem and hemispheres in 1 and 3 months old C57BL/6J and BALB/cLac mice. The characteristic dynamics of serotonin and its metabolite content related to the age was found in different brain regions and proved to be similar in both the strains, but the rate of serotonin system development in C57BL/6J mice was higher than in BALB/c Lac mice. An intensive catabolism of serotonin, possibly, related to the reaction to new environment was noted in the newborn animals. Sex differences in the rate of serotonin system maturation and serotonin and 5-HIAA content were shown for 12--16 days old mice: 12 days old males were characterized by more intensive metabolism than females while 16 days old males had less serotonin than females.  相似文献   

18.
In intact Wistar pubertal male rats held on LD 8:16 (winter) and 16:8 (summer) pineal melatonin (M) production and other pineal indoles content serotonin (S), 5-methoxytriptamine (5-MT), N-acetylserotonin (N-aS), 5-hydroxyindoleacetic acid (5-HIAA) and 5-methoxyindoleacetic acid (5-MIAA) were investigated in basic conditions and after 10-days T4 administration. The results suggest, that intact control in winter comparing with summer demonstrates high M, N-aS, 5-HIAA and 5-MIAA level, but low 5-MT concentrations, S level was not changed. T4 administration in winter produced a pronounced augmentation of all parameters (excluding serotonin), in summer M production not only increased, but appears to be dependent on the active metabolism of his precursors (S, 5-MT, N-aS). The experimental data favour more profound comprehension to the mechanisms of pineal activity regulation.  相似文献   

19.
《Life sciences》1996,59(15):PL239-PL246
The effects of single (1mg/kg) and repeated (1mg/kg 21 daily for 4 days) diazepam administration are investigated on brain regional 5-hydroxytryptamine (5-HT; serotonin) and 5-hydroxy indoleacetic acid (5-HIAA) concentration in rats. Daily treatment decreased food intakes but body weights did not decrease. Administration of diazepam (1mg/kg) to 4 day sahne injected rats on the 5th day decreased 5-HT levels in the hippocampus and increased it in the hypothalamus. 5-HIAA levels were increased in the striatum and decreased in the hypothalamus. 4 day diazepam injected rats injected with sahne on the 5th day also exhibited silmilar changes of 5-HT and 5-HIAA. Cortical levels of 5-HIAA were also smaller in these rats. Administration of diazepam to 4 day diazepam injected rats again decreased 5-HT in the hippocampus and 5-HIAA in the hypothalamus. 5-HT and 5-HIAA were both decreased in the striatum. Regionally specific effects of diazepam on brain serotonin metabolism are discussed in relation to their possible functions.  相似文献   

20.
A spectrofluorometric study of the changes in serotonin and noradrenalin content was carried out in the cortex of large hemispheres, the hypothalamus and the midbrain on the 5th-6th day after creation of a pathological focus in the area of the occipital portion of the cortex in 12 cats. Diffuse changes in the bioelectrical activity of the brain were revealed on the EEG at this period: there appeared peak-like variations and slow waves of increased amplitude. There was noted a marked decrease in serotonin content in the cortex of the large hemispheres with the prevalance of an effect in the area directly adhering to the focus of affection. A tendency to reduction in serotonin level was revealed in the hypothalamus and the midbrain. The content of noradrenalin in the mentioned structures of the brain showed no significant change. The significance of the serotoninergic structures of the brain in the mechanisms participating in the restoration of the functional condition of the brain after its experimental injury is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号