首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Our present understanding of the morphology of neuroepithelial bodies (NEBs) in mammalian lungs is comprehensive. Several hypotheses have been put forward regarding their function but none has been proven conclusively. Microscopic data on the innervation that appears to affect the reaction of NEBs to stimuli have given rise to conflicting interpretations. The aim of this study has been to check the validity of the hypothesis that pulmonary NEBs receive an extensive vagal sensory innervation. The fluorescent neuronal tracer DiI was injected into the vagal sensory nodose ganglion and NEBs were visualized in toto by using immunocytochemistry and confocal microscopy on 100-μm-thick frozen sections of the lungs of adult rats. The most striking finding was the extensive intraepithelial terminal arborizations of DiI-labelled vagal afferents in intrapulmonary airways, apparently always co-appearing with calcitonin gene-related peptide (CGRP)-immunoreactive NEBs. Not all NEBs received a traced nerve fibre. Intrapulmonary CGRP-containing nerve fibres, including those innervating NEBs, always appeared to belong to a nerve fibre population different from the DiI-traced fibres and hence did not arise from the nodose ganglion. Therefore, at least some of the pulmonary NEBs in adult rats are supplied with sensory nerve fibres that originate from the vagal nodose ganglion and form beaded ramifications between the NEB cells, thus providing support for the hypothesis of a receptor function for NEBs. Received: 13 November 1997 / Accepted: 17 February 1998  相似文献   

2.
We investigated the development of innervation of the pulmonary neuroendocrine cell (PNEC) system composed of single cells and organoid cell clusters, neuroepithelial bodies (NEB) in rabbit fetal and neonatal lungs. To visualize the nerve fibers and their contacts with PNECs/NEBs, we used confocal microscopy and multilabel immunohistochemistry (IHC) with pan-neural marker, synaptic vesicle protein 2 (SV2), and serotonin (5-HT) as markers for PNECs/NEBs, and smooth muscle actin or cytokeratin to identify airway landmarks. The numbers and distribution of PNEC/NEB at different stages of lung development (E16, 18, 21, 26, and P2) and the density of innervation were quantified. First PNECs immunoreactive for 5-HT were identified in primitive airway epithelium at E18 as single cells or as small cell clusters with or without early nerve contacts. At E21 a significant increase in the number of PNECs with formation of early innervated NEB corpuscules was observed. The overall numbers of PNECs/NEBs and the density of mucosal, submucosal, and intercorpuscular innervation increased with progressing gestation and peaked postnatally (P2). At term, the majority of NEBs and single PNECs within airway mucosa possessed neural contacts. Such an extensive and complex innervation of the PNEC system indicates a multifunctional role in developing lung and during neonatal adaptation.  相似文献   

3.
T Tervo  A Palkama 《Acta anatomica》1978,102(2):164-175
The innervation of the rabbit cornea was investigated histochemically and electron-microscopically with special reference to the autonomic nerves. Both formaldehyde- and glyoxylic-acid-induced fluorescence methods revealed adrenergic nerves in the stroma; a few fibres were also observed between the basal epithelial cells near the limbus. Acetylcholinesterase- (AChE-) positive nerves were found both in the stroma and in the epithelium, whereas nonspecific cholinesterase (NsChE) activity appeared only in the stromal nerves. Under the electron microscope, both AChE and NsChE activities were observed to be located in the axon membranes. A weak NsChE reaction also appeared in the Schwann cells. When the specimens fixed with KMnO4 were examined under the electron microscope, most nerve fibres did not contain any special axoplasmic structures, although several axons contained mitochondria. Moreover, two vesicle-containing axon types were found in the stromal nerves; axons with small granular vesicles and axons containing small agranular vesicles. In the epithelium, two types of fibres were observed; one type containing only mitochondria while the other showed both agranular vesicles and mitochondria.  相似文献   

4.
Summary The coexistence of serotonin and calcitonin gene-related peptide (CGRP) in neuroepithelial bodies of the bandicoot, Isoodon macrourus, has been examined using immunocytochemistry at the light- and electronmicroscope levels. The avidin-biotin technique of antigen localisation was used initially to identify serotonin-like and CGRP-like immunoreactivity (-LI). Serotonin-LI and CGRP-LI were found in neuroepithelial cells in the lungs of 30-day-old bandicoots. CGRP-LI could also be demonstrated in nerve fibres associated with some neuroepithelial bodies. The protein A-gold technique of antigen localisation was used to label neuroepithelial cells and nerve fibres at the subcellular level. Serotonin-LI and CGRP-LI were observed in the same dense-cored vesicles of most neuroepithelial cells; however, some neuroepithelial cells were shown to possess serotonin-LI without CGRP-LI. Nerve fibres immediately adjacent to neuroepithelial bodies exhibited mainly CGRP-LI. These results show that serotonin-LI and CGRP-LI are present in neuroepithelial cells of the bandicoot in the same secretory vesicles. This pattern of co-localisation may reflect co-ordinated or synergistic actions of these two neuroactive substances.  相似文献   

5.
Pulmonary neuroepithelial bodies (NEBs) are extensively innervated organoid groups of neuroendocrine cells that lie in the epithelium of intrapulmonary airways. Our present understanding of the morphology of NEBs is comprehensive, but direct physiological studies have so far been challenging because the extremely diffuse distribution of NEBs makes them inaccessible in vivo and because a reliable in vitro model is lacking. Our aim has been to optimise an in vitro method based on vibratome slices of living lungs, a model that includes NEBs, the surrounding tissues and at least part of their complex innervation. This in vitro model offers satisfactory access to pulmonary NEBs, provided that they can be differentiated from other tissue elements. The model was first optimised for living rat lung slices. Neutral red staining, reported to stain rabbit NEBs, proved unsuccessful in rat slices. On the other hand, the styryl pyridinium dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide (4-Di-2-ASP), showed brightly fluorescent cell groups, reminiscent of NEBs, in the airway epithelium of living lung slices from rat. In addition, nerve fibres innervating the NEBs were labelled. The reliable and specific labelling of pulmonary NEBs by 4-Di-2-ASP was corroborated by immunostaining for protein gene-product 9.5. Live cell imaging and propidium iodide staining further established the acceptable viability of 4-Di-2-ASP-labelled NEB cells in lung slices, even over long periods. Importantly, the in vitro model and 4-Di-2-ASP staining procedure for pulmonary NEBs appeared to be equally reproducible in mouse, hamster and rabbit lungs. Diverse immunocytochemical procedures could be applied to the lung slices providing an opportunity to combine physiological and functional morphological studies. Such an integrated approach offers additional possibilities for elucidating the function(s) of pulmonary NEBs in health and disease. This work was supported by the following research grants: Fund for Scientific Research Flanders (G.0155.01 to D.A.), NOI-BOF (to D.A.) and BOF-RUCA Small Projects (KPO2 to D.A., I.B. and F.V.M.) from the University of Antwerp.  相似文献   

6.
Pulmonary neuroepithelial body (NEB) receptors in rats receive at least four different nerve fibre populations. In addition to a spinal sensory innervation that contacts NEBs at their basal side, extensive vagal nodose sensory terminals and separate nitrergic and cholinergic nerve endings protrude between NEB cells. In the present study, antibodies against the vesicular glutamate transporter 2 (VGLUT2), a transmembrane protein responsible for loading glutamate into synaptic vesicles, were used to investigate whether some of the nerve terminals contacting NEBs in rat lungs might use glutamate as a neurotransmitter. VGLUT2 immunoreactivity (IR) was detected in extensive intraepithelial arborising nerve terminals that appeared to contact most of the NEBs. Multiple immunostaining showed VGLUT2 IR in the vagal nodose and spinal sensory nerve terminals contacting NEBs, and in another, most likely sensory, intraepithelial nerve fibre population, the origin and further characteristics of which remain to be elucidated. At least part of the VGLUT2-immunoreactive nerve fibres that contact NEBs were shown to be myelinated. The expression of VGLUT2 indicates that glutamate is stored and released as a neurotransmitter in terminals of several pulmonary (sensory) nerve fibre populations that selectively relate to the complex NEB receptors. The present study strongly suggests an involvement of glutamatergic mechanisms in the peripheral transduction of sensory stimuli from the lungs, via the release of glutamate from nerve terminals, thereby modulating the activity of NEB receptor cells or the excitability of afferent nerves.  相似文献   

7.
The ultrastructure of the innervation of the human ureterovesical junction was studied. Three different nerve terminals were distinguished among the smooth muscle cells. 1. Nerve processes containing predominantly small granular vesicles (40--60 nm in diameter). 2. Other nerve fibres contained predominantly small round agranular vesicles (30--50 nm in diameter). 3. Processes with large granulated vesicles (80--120 nm in diameter). The first type may be adrenergic, the second cholinergic and the third may originate from the local nerve cells. The gap between the nerve fibres and muscle cells was 300 to 500 nm wide and no synaptic thickenings were observed. This suggests that the transmitter may influence several muscle cells, and the different nerve fibres may directly innervate the smooth muscle cells.  相似文献   

8.
Afferent activities arising from sensory nerve terminals located in lungs and airways are carried almost exclusively by fibres travelling through the vagus nerve. Based on electrophysiological investigations, intrapulmonary airway-related vagal afferent receptors have been classified into three main subtypes, two of which are myelinated and mechanosensitive, i.e., rapidly and slowly adapting receptors. To allow for a full functional identification of the distinct populations of airway receptors, morphological and neurochemical characteristics still need to be determined. Nerve terminals visualised using markers for myelinated vagal afferents seem to be almost uniquely associated with two morphologically well-formed airway receptor end organs, smooth muscle-associated airway receptors (SMARs) and neuroepithelial bodies (NEBs), localised in airway smooth muscle and epithelium, respectively. Due to the lack of a selective marker for SMARs in mice, no further neurochemical coding is available today. NEBs are extensively innervated diffusely spread groups of neuroendocrine cells in the airway epithelium, and are known to receive at least two separate populations of myelinated vagal afferent nerve terminals. So far, however, no evidence has been reported for the expression of channels that may underlie direct sensing and transduction of mechanical stimuli by the receptor terminals in NEBs and SMARs. This study focused on the expression of mechanogated two-pore domain K+ (K2P) channels, TREK-1 and TRAAK, in mouse airways and more particular in the NEB micro-environment and in SMARs by multiple immunostaining. TREK-1 could be detected on smooth muscle cells surrounding intrapulmonary airways and blood vessels, while TRAAK was expressed on myelinated vagal afferents terminating both in SMARs and in the NEB micro-environment. Co-stainings with known markers for subpopulations of myelinated vagal afferents and general neuronal markers revealed that all identified SMARs exhibit TRAAK immunoreactivity, and that at least three subpopulations exist in mouse airways. Also, the intraepithelial terminals of both subpopulations of NEB-associated myelinated vagal sensory nerve fibres were shown to express TRAAK. In conclusion, the present study finally characterised an intrinsically mechanosensitive ion channel, the K2P channel TRAAK, on the terminals of identified myelinated vagal nodose airway afferents, organised as SMARs and as components of the innervation of NEBs. These data support the hypothesis that both SMARs and NEBs harbour the morphological counterparts of electrophysiologically identified myelinated vagal airway mechanoreceptors. TRAAK appears to be strongly involved in regulating airway mechanosensing since it was found to be expressed on the terminals of all subpopulations of potential vagal mechanosensors.  相似文献   

9.
As best characterized for rats, it is clear that pulmonary neuroepithelial bodies (NEBs) are contacted by a plethora of nerve fiber populations, suggesting that they represent an extensive group of multifunctional intraepithelial airway receptors. Because of the importance of genetically modified mice for functional studies, and the current lack of data, the main aim of the present study was to achieve a detailed analysis of the origin and neurochemical properties of nerve terminals associated with NEBs in mouse lungs. Antibodies against known selective markers for sensory and motor nerve terminals in rat lungs were used on lungs from control and vagotomized mice of two different strains, i.e., Swiss and C57-Bl6. NEB cells were visualized by antibodies against either the general neuroendocrine marker protein gene-product 9.5 (PGP9.5) or calcitonin gene-related peptide (CGRP). Thorough immunohistochemical examination of NEB cells showed that some of these NEB cells also exhibit calbindin D-28 k (CB) and vesicular acetylcholine transporter (VAChT) immunoreactivity (IR). Mouse pulmonary NEBs were found to receive intraepithelial nerve terminals of at least two different populations of myelinated vagal afferents: (1) Immunoreactive (ir) for vesicular glutamate transporters (VGLUTs) and CB; (2) expressing P2X2 and P2X3 ATP receptors. CGRP IR was seen in varicose vagal nerve fibers and in delicate non-vagal fibers, both in close proximity to NEBs. VAChT immunostaining showed very weak IR in the NEB-related intraepithelial vagal sensory nerve terminals. nNOS- or VIP-ir nerve terminals could be observed at the base of pulmonary NEBs. While a single NEB can be contacted by multiple nerve fiber populations, it was clear that none of the so far characterized nerve fiber populations contacts all pulmonary NEBs. The present study revealed that mouse lungs harbor several populations of nerve terminals that may selectively contact NEBs. Although at present the physiological significance of the innervation pattern of NEBs remains enigmatic, it is likely that NEBs are receptor–effector end-organs that may host complex and/or multiple functional properties in normal airways. The neurochemical information on the innervation of NEBs in mouse lungs gathered in the present study will be essential for the interpretation of upcoming functional data and for the study of transgenic mice.  相似文献   

10.
Summary The pulmonary artery of Bufo marinus contains large numbers of bipolar cells situated in the tunica adventitia and in the outer layers of the media. These cells show a bright green-yellow fluorescence (emission spectra 485 nm) after formaldehyde pre-treatment suggesting that they contain a primary monoamine. The most characteristic fine-structural feature of these cells is the presence of numerous dense-cored vesicles (80—300 nm diameter) in their cytoplasm. The cells are in close contact (20 nm gap) with both agranular and granular nerve fibres. Both EM-cytochemical and formaldehyde-induced fluorescence tests indicate that the granule-containing nerve fibres are adrenergic. The agranular nerve fibres form discrete synaptic contacts with pre-and post-synaptic membrane thickenings on the cells. This was never observed with respect to the adrenergic fibres. Each process of the cells is about 45 m long. The processes do not bear any special relationship to either vessels of the arterial vasa vasorum or medial smooth muscle cells. Their location in the wall of the artery suggests that they are functionally significant with respect to activity of the arterial media.  相似文献   

11.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

12.
The adrenergic innervation of the urinary bladder of normal female and pregnant rats has been studied using a fluorescence histochemical method. The bladder is richly innervated by adrenergic nerve fibres as is evidenced by the presence of numerous adrenergic nerves in the adventitia, musculosa and submucosa. However, adrenergic nerve cells could not be observed. During pregnancy, adrenergic nerve fibres showed signs of degeneration, as most of the nerve fibres disappeared and the surviving fibres were much swollen. 10 days after parturition the pattern and density of adrenergic innervation became almost similar to those of the control animals.  相似文献   

13.
Summary The innervation of the toad (Bufo marinus) lung was studied with transmission electron microscopy and fluorescence techniques, both before and after 12 or 20 days close vagosympathetic denervation. Four cytologically distinct types of neuronal processes were recognised, in relation to the visceral muscles of the lung. These were described as cholinergic, adrenergic, nonadrenergic/non-cholinergic (NANC) and sensory on the basis of the characteristics of their vesicular content and cytochemical reactions. An apparent efferent innervation of visceral smooth muscle was achieved by NANC (50%), cholinergic (25%) and adrenergic (25%) fibres. A few sensory fibres were also present. After denervation only NANC fibres persisted, showing that the cell bodies of these fibres were intrapulmonary. The vascular smooth muscle was supplied by cholinergic, adrenergic and sensory fibres. In the walls of the proximal branches of the pulmonary artery were fibres containing large dense-cored vesicles. These profiles, which were associated with the vasa vasorum, were similar to neurosecretory fibres. After denervation all neural profiles associated with the vasculature had degenerated. The observations suggest that vagal vasodepressor effects in the toad lung are mediated indirectly through relaxation of visceral muscle strands which in their contracted state compress vascular channels.The authors would like to thank Dr. J.R. McLean for technical advice on fluorescence microscopy. This work was supported by a grant from the Australian Research Grants Committee  相似文献   

14.
The pulmonary neuroendocrine cell system comprises solitary neuroendocrine cells and clusters of innervated cells or neuroepithelial bodies (NEBs). NEBs figure prominently during the perinatal period when they are postulated to be involved in physiological adaptation to air breathing. Previous studies have documented hyperplasia of NEBs in cystic fibrosis (CF) lungs and increased neuropeptide (bombesin) content produced by these cells, possibly secondary to chronic hypoxia related to CF lung disease. However, little is known about the role of NEBs in the pathogenesis of CF lung disease. In the present study, using a panel of cystic fibrosis transmembrane conductance regulator (CFTR)-specific antibodies and confocal microscopy in combination with RT-PCR, we demonstrate expression of CFTR message and protein in NEB cells of rabbit neonatal lungs. NEB cells expressed CFTR along with neuroendocrine markers. Confocal microscopy established apical membrane localization of the CFTR protein in NEB cells. Cl(-) conductances corresponding to functional CFTR were demonstrated in NEB cells in a fresh lung slice preparation. Our findings suggest that NEBs, and related neuroendocrine mechanisms, likely play a role in the pathogenesis of CF lung disease, including the early stages before establishment of chronic infection and chronic lung disease.  相似文献   

15.
The pulmonary neuroepithelial bodies (NEBs) constitute polymodal airway chemosensors for monitoring and signaling ambient gas concentrations (pO2, pCO2/H+) via complex innervation to the brain stem controlling breathing. NEBs produce the bioactive amine, serotonin (5-HT), and a variety of peptides with multiple effects on lung physiology and other organ systems. NEBs in mammals appear prominent and numerous during fetal and neonatal periods, and decline in the post-natal period suggesting an important role during perinatal adaptation. The naked mole-rat (NMR), Heterocephalus glaber, has adapted to the extreme environmental conditions of living in subterranean burrows in large colonies (up to 300 colony mates). The crowded, unventilated burrows are environments of severe hypoxia and hypercapnia. However, NMRs adjust readily to above ground conditions. The chemosensory NEBs of this species were characterized and compared to those of the conventional Wistar rat (WR) to identify similarities and differences that could explain the NMR’s adaptability to environments. A multilabel immunohistochemical analysis combined with confocal microscopy revealed that the expression patterns of amine, peptide, neuroendocrine, innervation markers and chemosensor component proteins in NEBs of NMR were similar to that of WR. However, we found the following differences: 1) NEBs in both neonatal and adult NMR lungs were significantly larger and more numerous as compared to WR; 2) NEBs in NMR had a more variable compact cell organization and exhibited significant differences in the expression of adhesion proteins; 3) NMR NEBs showed a significantly greater ratio of 5-HT positive cells with an abundance of 5-HT; 4) NEBs in NMR expressed the proliferating cell nuclear antigen (PCNA) and the neurogenic gene (MASH1) indicating active proliferation and a state of persistent differentiation. Taken together our findings suggest that NEBs in lungs of NMR are in a hyperactive, functional and developmental state, reminiscent of a persistent fetal state that extends postnatally.  相似文献   

16.
Summary The Falck-Hillarp technique for the localisation of biogenic amines has been used to examine the adrenergic innervation of the thoracic vasculature and lung, and to demonstrate the occurrence of aortic bodies in the domestic fowl. The proximal pulmonary vein is very densely innervated but distally the innervation becomes sparse. The pulmonary artery is sparsely innervated over its whole length. The bronchial muscle of the lung has little adrenergic innervation and fluorescent cell bodies are absent from the lung. The thoracic aorta receives a moderate adrenergic innervation. In the region of the aortic arch and pulmonary arteries groups of fluorescent cells are common. Extramedullary chromaffin cells and small, intensely fluorescent cells occur within these groups. In the media of the aorta and pulmonary artery other types of fluorescent cells are found. These results are discussed in the light of previous observations.Part of this work was performed while the author was a postdoctoral research fellow of the National Heart Foundation of Australia. His thanks are due to Prof. G. Burnstock for use of laboratory facilities.  相似文献   

17.
Summary Dual innervation of snake cerebral blood vessels by adrenergic and cholinergic fibres was demonstrated with the use of histochemical methods. Although the nerve plexuses are somewhat less dense, the essential features of innervation of the blood vessels are similar to those of mammals with the exception that the adrenergic plexuses are more prominent than the cholinergic plexuses. The major arteries of the cerebral carotid system have a rich nerve supply. However, the innervation is less rich in the basilar and poor in the spinal (vertebral) arteries. Although the arteries supplying the right side of head are poorly developed, three pairs of arteries, cerebral carotids, ophthalmics and spinals, supply the snake brain. The carotids and ophthalmics are densely innervated and are accompanied by thick nerve bundles, suggesting that the nerves preferentially enter the skull along those arteries. Some parenchymal arterioles are also dually innervated. Connection between the brain parenchyma and intracerebral capillaries via both cholinergic and adrenergic fibres was observed. In addition cholinergic nerve fibres, connecting capillaries and the intramedullary nerve fibre bundles, were noticed. Capillary blood flow may be influenced by both adrenergic and cholinergic central neurons. The walls of capillaries also exhibit heavy acetylcholinesterase activity. This may indicate an important role for the capillary in the regulation of intracerebral blood flow.  相似文献   

18.
Summary The adrenergic innervation of the major salivary glands in the rat has been studied by a specific histochemical method for the visualization of the adrenergic transmitter. Adrenergic varicose nerve fibres were found, located in a typical adrenergic ground plexus closely surrounding the serous acini of the submaxillary and parotid glands, but not the acini of the mainly mucous sublingual gland. The ducts were found to be completely devoid of adrenergic innervation. Arterioles and venules in the stroma of all three glands and certain very small vessels, possibly the sphincters of arterio-venous anastomoses, were also richly innervated by adrenergic vasomotor fibres. The relationship of the adrenergic nerve fibres to the different functional units of the gland parenchyma is discussed.The investigation has been supported by a research grant (B 66–257) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB 05236-01) from the National Institute of Neurological Diseases and Blindness.  相似文献   

19.
Summary The general structure, ultrastructure and innervation of the swimbladder of the smooth toadfish, Tetractenos glaber, were examined with light-microscopic, fluorescence-histochemical, and transmission electron-microscopic techniques. The structure of the swimbladder is similar to that of other euphysoclists. Fluorescence histochemistry showed adrenergic fibres in both the secretory and resorptive areas of the swimbladder. Transmission electron microscopy revealed two morphologically distinct axon profiles type-I profiles containing many small, flattened vesicles; type-II profiles containing both large, granular vesicles and rounded, small clear vesicles in varying proportions.The gas-gland cells and surrounding muscularis mucosae are innervated by both type-I and type-II fibres. Type-I fibres also innervate pre-rete arteries. The rete- and gas-gland capillaries do not appear to be innervated. Arteries running to the resorptive area are innervated by type-I fibres. Both type-I and type-II profiles make contact with the muscularis mucosae in the resorptive area. Only type-I fibres innervate the radial dilator muscle in the oval sphincter region, whereas only type II fibres innervate the circular muscle of the oval sphincter.Type-I fibres took up -methyl-noradrenaline, and could not be found after pre-treatment with 6-hydroxydopamine. They are, therefore, assumed to be adrenergic. Type-II fibres were tentatively identified, by exclusion, as cholinergic.  相似文献   

20.
Summary Innervation of the ascidian branchial basket and other structures is demonstrated by staining for cholinesterase. Cholinesterase activity is not restricted to synaptic sites but is present throughout the neurons. Primary and secondary axonal bundles form a bilaterally symmetric innervation pattern around the large dorsal visceral nerve. These bundles continue to split into progressively smaller bundles as they course throughout the basket. Axons are suspended in a fibrous matrix and run within the blood sinuses on the atrial side of the basket. Stigmatal ciliated cells of the branchial basket are innervated by highly branched distal portions of neurons, whose cell bodies are located in the ganglion. Synaptic boutons, containing electron-lucent vesicles, are found at nearly all stigmatal ciliated cells. NiCl2backfills of the visceral nerve reveal a distinct population of central neurons, some of which presumably control ciliary arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号