首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hsp70 overexpression can protect cells from stress-induced apoptosis. Our previous observation that Hsp70 inhibits cytochrome c release in heat-stressed cells led us to examine events occurring upstream of mitochondrial disruption. In this study we examined the effects of heat shock on the proapoptotic Bcl-2 family member Bax because of its central role in regulating cytochrome c release in stressed cells. We found that heat shock caused a conformational change in Bax that leads to its translocation to mitochondria, stable membrane association, and oligomerization. All of these events were inhibited in cells that had elevated levels of Hsp70. Hsp70 did not physically interact with Bax in control or heat-shocked cells, indicating that Hsp70 acts to suppress signals leading to Bax activation. Hsp70 inhibited stress-induced JNK activation and inhibition of JNK with SP600125 or by expression of a dominant negative mutant of JNK-blocked Bax translocation as effectively as Hsp70 overexpression. Hsp70 did not protect cells expressing a mutant form of Bax that has constitutive membrane insertion capability or cells treated with a small molecule activator of apoptosome formation, indicating that it is unable to prevent cell death after mitochondrial disruption and caspase activation have occurred. These results indicate that Hsp70 blocks heat-induced apoptosis primarily by inhibiting Bax activation and thereby preventing the release of proapoptotic factors from mitochondria. Hsp70, therefore, inhibits events leading up to mitochondrial membrane permeabilization in heat-stressed cells and thereby controls the decision to die but does not interfere with cell death after this event has occurred.  相似文献   

2.
The aim of this work was to find out whether Src kinase family and c-Jun N-terminal kinase (JNK) are involved in the ROS signaling pathway that could induce mucin MUC5AC expression in cultured cells of airway epithelia (BEAS-2B). For this purpose, the impact of cigarette smoke extract (CSE) on ROS production and MUC5AC expression in BEAS-2B cells was studied. Effects of ROS scavenger dimethylthiourea (DMTU), JNK specific inhibitor SP600125, and Src specific inhibitor PP2 in the CSE-induced ROS generation and MUC5AC expression were also assessed. A dose-dependent increase of ROS production in cells exposed to different concentrations of CSE was detected. DMTU inhibited cigarette smoke-induced Src phosphorylation, suggesting the ROS involvement in activation of Src kinase. Furthermore, SP600125 reduced the expression of MUC5AC. The activation of JNK was suppressed by PP2 but not by TACE inhibitor TAPI-1 or EGFR inhibitor PD153035. These results suggest that Src kinase participate in JNK activation and MUC5AC synthesis, which is independent of the TACE/EGFR activation. We conclude that ROS-Src-JNK signal cascade plays a particular role in cigarette smoke-induced mucin MUC5AC expression in BEAS-2B cells.  相似文献   

3.
Aged organisms exhibit a greatly decreased ability to induce the major heat shock protein, Hsp72, in response to stresses, a phenomenon that can also be observed in cell cultures (Heydari AR, Takahashi R, Gutsmann A, You S and Richardson A (1994) Hsp70 and aging. Experientia 50: 1092–1098). Hsp72 was shown to protect cells from a variety of stresses. The protective function of Hsp72 has been commonly ascribed to its chaperoning ability. However, recently we showed that Hsp72 protects cells from heat shock by suppression of a stress-kinase JNK, an essential component of the heat-induced apoptotic pathway (Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI and Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272: 18033–18037). Here we demonstrate that because of the diminished inducibility of Hsp72 in aged cells, Hsp72-mediated control of JNK signaling pathway is compromised. This results in increased rate of apoptotic cell death following heat shock. We show that forced expression of Hsp72 in aged cells from an adenovirus-based vector completely suppresses activation of JNK by heat shock and consequently protects from heat-induced apoptosis. We also demonstrate for the first time that it is possible to restore endogenous expression of Hsp72 in aged cells. This can be achieved by treatment with the proteasome inhibitor MG132. Induction of Hsp72 in aged cells under these conditions leads to suppression of JNK activation by a heat shock and restoration of thermotolerance manifested in a lower rate of apoptosis.  相似文献   

4.
The elevated expression of 70 kDa heat shock protein (Hsp70) induces resistance to stress-induced apoptosis. We have screened a variety of natural products for their ability to enhance Hsp70 expression as anti-apoptotic agent. We found that glucuronic acid (GA) induced the synthesis of Hsp70 and that cells pretreated with GA were significantly tolerant to stress including heat shock and hydrogen peroxide. We also found that GA induces the production of reactive oxygen species (ROS), a process inhibited by NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI) and antioxidant N-acetylcysteine (NAC). GA-induced ROS production was also inhibited in RacN17 cell line overexpressing a dominant negative mutant of Rac1. Furthermore, GA treatment induces MAPKs activation (SAPK/JNK and p38) and Hsp70 expression in ROS dependent manner, suggesting that GA turns on the signaling pathway by generation of ROS through Rac1. We analyzed the profiles of newly synthesized proteins by GA with 2-dimensional gel electrophoresis and MALDI-TOF MS and found that two families of proteins were expressed by GA. One was similar to the protein family synthesized by heat shock (Hsp70, Hsp73, Hsp65, Hsp90, vimentin, tubulin, Ras homolog); and the other was a family of protein specific to GA (calreticulin, annexin III, thioredoxin peroxidase). These results suggest that GA-induced stress responses are mediated by ROS generation and are similar, in part, to heat shock-induced responses and GA can be possibly adopted for the protecting agent from cell death.  相似文献   

5.
Hsp105alpha and Hsp105beta are major heat shock proteins in mammalian cells that belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has opposite effects on stress-induced apoptosis depending on the cell type. However, it is not fully understood how Hsp105 regulates stress-induced apoptosis. In this study, we examined how Hsp105alpha and Hsp105beta regulate H2O2-induced apoptosis by using HeLa cells in which expression of Hsp105alpha or Hsp105beta was regulated using doxycycline. Overexpression of Hsp105alpha and Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria in H2O2-treated cells. Furthermore, both c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) were activated by treatment with H2O2, and the activation of both kinases was suppressed by overexpression of Hsp105alpha and Hsp105beta. However, H2O2-induced apoptosis was suppressed by treatment with a potent inhibitor of p38 MAPK, SB202190, but not a JNK inhibitor, SP600125. These findings suggest that Hsp105alpha and Hsp105beta suppress H2O2-induced apoptosis by suppression of p38 MAPK signaling, one of the essential pathways for apoptosis.  相似文献   

6.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

7.
The stress‐activated protein kinase/c‐Jun N‐terminal kinase (SAPK/JNK) pathway is a well‐known senescence‐related stress activated protein kinase. Multiple environmental stresses induce programmed cell death, such as apoptosis. Normal human diploid fibroblast (HDF) cells have a limited life span in vitro, halting proliferation after a fixed number of cell divisions. Aged passage HDF showed resistance to oxidative stress involving heat shock proteins (Hsp60) through a mechanism involving the translocation of Hsp60 from the mitochondria to the cytosol. The present study showed that the translocation of Hsp60 from the mitochondria to the cytosol followed by high levels of p‐SAPK/JNK activation as a result of oxidative stress was observed in the young cells only. The inhibition of SAPK/JNK activation by SP600125 under oxidative stress almost completely blocked the translocation of Hsp60 in both young and aged cells. This suggests that aged HDF cells are resistant to oxidative stress by blocking the translocation of Hsp60 from the mitochondria to the cytosol followed by SAPK/JNK inhibition. Overall, the mechanism of resistance by oxidative stress in aged cells is induced by blocked of the translocation of Hsp60 followed by SAPK/JNK inactivation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase   总被引:37,自引:0,他引:37  
Park HS  Lee JS  Huh SH  Seo JS  Choi EJ 《The EMBO journal》2001,20(3):446-456
Hsp72, a major inducible member of the heat shock protein family, can protect cells against many cellular stresses including heat shock. In our present study, we observed that pretreatment of NIH 3T3 cells with mild heat shock (43 degrees C for 20 min) suppressed UV-stimulated c-Jun N-terminal kinase 1 (JNK1) activity. Constitutively overexpressed Hsp72 also inhibited JNK1 activation in NIH 3T3 cells, whereas it did not affect either SEK1 or MEKK1 activity. Both in vitro binding and kinase studies indicated that Hsp72 bound to JNK1 and that the peptide binding domain of Hsp72 was important to the binding and inhibition of JNK1. In vivo binding between endogenous Hsp72 and JNK1 in NIH 3T3 cells was confirmed by co-immunoprecipitation. Hsp72 also inhibited JNK-dependent apoptosis. Hsp72 antisense oligonucleotides blocked Hsp72 production in NIH 3T3 cells in response to mild heat shock and concomitantly abolished the suppressive effect of mild heat shock on UV-induced JNK activation and apoptosis. Collectively, our data suggest strongly that Hsp72 can modulate stress-activated signaling by directly inhibiting JNK.  相似文献   

9.
Silibinin is an active constituent extracted from blessed milk thistle (Silybum marianum). Our previous study demonstrated that silibinin induced autophagy and apoptosis via reactive oxygen species (ROS) generation in HeLa cells. In this study, we investigated whether the autophagy- and apoptosis-associated molecules also involved in ROS generation. Silibinin promoted the expression phosphorylated-p53 (p-p53) in a dose-dependent manner. Pifithrin-α (PFT-α), a specific inhibitor of p53, reduced ROS production and reversed silibinin's growth-inhibitory effect. The ROS scavenger N-acetyl cysteine (NAC) attenuated silibinin-induced up-regulation of p-p53 expression, suggesting that p53 might be regulated by ROS and forms a positive feedback loop with ROS. On the other hand, silibinin dose-dependently promoted the expression of phosphorylated-c-Jun N-terminal kinase (p-JNK). Inhibition of JNK by SP600125 decreased ROS generation. NAC down-regulated the expression of p-JNK, indicating that JNK could be activated by ROS. Activation of p53 was suppressed by SP600125 and expression of p-JNK was inhibited by PFT-α, therefore silibinin might activate a ROS-JNK-p53 cycle to induce cell death. Silibinin up-regulated the PUMA and Bax expressions and down-regulated the mitochondrial membrane potential (MMP) level. PFT-α reduced the expression of PUMA and Bax. These results showed that p53 could interfere with mitochondrial functions such as MMP via PUMA pathways, thus resulting in ROS generation. In order to elucidate the functions of p53 in silibinin induced ROS generation, we have chosen the A431 cells (human epithelial carcinoma) because they lack p53 activity (p53His273 mutation). Interestingly, silibinin did not up-regulate the ROS level in A431 cells but lower the ROS level. PFT-α had no influence on ROS level in A431 cells. p53 activation plays a crucial role in silibinin induced ROS generation.  相似文献   

10.
CD70 is expressed in normal activated immune cells as well as in several types of tumors. It has been established that anti-CD70 mAb induces complement-dependent death of CD70(+) tumor cells, but how anti-CD70 mAb affects the intrinsic signaling is poorly defined. In this report, we show that ligation of CD70 expressed on EBV-transformed B cells using anti-CD70 mAb induced production of reactive oxygen species (ROS) and subsequent apoptosis. We observed an early expression of endoplasmic reticulum (ER) stress response genes that preceded the release of apoptotic molecules from the mitochondria and the cleavage of caspases. CD70-induced apoptosis was inhibited by pretreatment with the ER stress inhibitor salubrinal, ROS quencher N-acetylcysteine, and Ca(2+) chelator BAPTA. We supposed that ROS generation might be the first event of CD70-induced apoptosis because N-acetylcysteine blocked increases of ROS and Ca(2+), but BAPTA did not block ROS generation. We also found that CD70 stimulation activated JNK and p38 MAPK. JNK inhibitor SP600125 and p38 inhibitor SB203580 effectively blocked upregulation of ER stress-related genes and cleavage of caspases. Inhibition of ROS generation completely blocked phosphorylation of JNK and p38 MAPK and induction of ER stress-related genes. Taken together, we concluded that cross-linking of CD70 on EBV-transformed B cells triggered ER stress-mediated apoptosis via ROS generation and JNK and p38 MAPK pathway activation. Our report reveals alternate mechanisms of direct apoptosis through CD70 signaling and provides data supporting CD70 as a viable target for an Ab-based therapy against EBV-related tumors.  相似文献   

11.
12.
13.
《Free radical research》2013,47(3):310-319
Silibinin is an active constituent extracted from blessed milk thistle (Silybum marianum). Our previous study demonstrated that silibinin induced autophagy and apoptosis via reactive oxygen species (ROS) generation in HeLa cells. In this study, we investigated whether the autophagy- and apoptosis-associated molecules also involved in ROS generation. Silibinin promoted the expression phosphorylated-p53 (p-p53) in a dose-dependent manner. Pifithrin-α (PFT-α), a specific inhibitor of p53, reduced ROS production and reversed silibinin's growth-inhibitory effect. The ROS scavenger N-acetyl cysteine (NAC) attenuated silibinin-induced up-regulation of p-p53 expression, suggesting that p53 might be regulated by ROS and forms a positive feedback loop with ROS. On the other hand, silibinin dose-dependently promoted the expression of phosphorylated-c-Jun N-terminal kinase (p-JNK). Inhibition of JNK by SP600125 decreased ROS generation. NAC down-regulated the expression of p-JNK, indicating that JNK could be activated by ROS. Activation of p53 was suppressed by SP600125 and expression of p-JNK was inhibited by PFT-α, therefore silibinin might activate a ROS-JNK-p53 cycle to induce cell death. Silibinin up-regulated the PUMA and Bax expressions and down-regulated the mitochondrial membrane potential (MMP) level. PFT-α reduced the expression of PUMA and Bax. These results showed that p53 could interfere with mitochondrial functions such as MMP via PUMA pathways, thus resulting in ROS generation. In order to elucidate the functions of p53 in silibinin induced ROS generation, we have chosen the A431 cells (human epithelial carcinoma) because they lack p53 activity (p53His273 mutation). Interestingly, silibinin did not up-regulate the ROS level in A431 cells but lower the ROS level. PFT-α had no influence on ROS level in A431 cells. p53 activation plays a crucial role in silibinin induced ROS generation.  相似文献   

14.
15.
In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1) in denbinobin-induced apoptosis in human lung adenocarcinoma (A549) cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN), two antioxidants (N-acetyl-L-cysteine (NAC) and glutathione (GSH)), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS) production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.  相似文献   

16.
Subjecting myogenic H9c2 cells to transient energy deprivation leads to a caspase-independent death with typical features of necrosis. Here we show that the rupture of cytoplasmic membrane, the terminal event in necrosis, is shortly preceded by rapid depolarization of mitochondrial membranes. The rapid deenergization of mitochondria critically depended upon prior generation of reactive oxygen species (ROS) during ATP depletion stage. Accordingly, expression of catalase prevented mitochondrial depolarization and averted subsequent necrosis. Interestingly, trifluoperazine, a compound that protects cells from ischemic insults, prevented necrosis of H9c2 cells through inhibition of ROS production. Other factors that regulated the mitochondrial membrane depolarization and subsequent loss of plasma membrane integrity include a stress kinase JNK activated at early steps of recovery from ATP depletion, as well as an apoptotic inhibitory protein ARC. Accordingly, inhibition of JNK or overexpression of ARC prevented mitochondrial depolarization and rescued H9c2 cells from necrosis. ROS and JNK affected mitochondrial deenergization and necrosis independently of each other since inhibition of ROS production did not prevent activation of JNK, whereas inhibition of JNK did not suppress ROS accumulation. Therefore, JNK activation and ROS production represent two independent pathways that control mitochondrial depolarization and subsequent necrosis of cells subjected to transient energy deprivation. Overexpression of ARC, although preventing mitochondrial depolarization, did not affect either JNK activation or production of ROS. The major heat shock protein Hsp72 inhibited JNK-related steps of necrotic pathway but did not affect ROS accumulation. Interestingly, mitochondrial depolarization and subsequent necrosis can be suppressed by an Hsp72 mutant Hsp72DeltaEEVD, which lacks chaperone function but can efficiently suppress JNK activation. Thus, Hsp72 is directly implicated in a signaling pathway, which leads to necrotic death.  相似文献   

17.
Arsenic trioxide has been known to regulate many biological functions such as cell proliferation, apoptosis, differentiation, and angiogenesis in various cell lines. We investigated the involvement of GSH and ROS such as H(2)O(2) and O(2)(*-) in the death of As4.1 cells by arsenic trioxide. The intracellular ROS levels were changed depending on the concentration and length of incubation with arsenic trioxide. The intracellular O(2)(*-) level was significantly increased at all the concentrations tested. Arsenic trioxide reduced the intracellular GSH content. Treatment of Tiron, ROS scavenger decreased the levels of ROS in 10 microM arsenic trioxide-treated cells. Another ROS scavenger, Tempol did not decrease ROS levels in arsenic trioxide-treated cells, but slightly recovered the depleted GSH content and reduced the level of apoptosis in these cells. Exogenous SOD and catalase did not reduce the level of ROS, but did decrease the level of O(2)(*-). Both of them inhibited GSH depletion and apoptosis in arsenic trioxide-treated cells. In addition, ROS scavengers, SOD and catalase did not alter the accumulation of cells in the S phase induced by arsenic trioxide. Furthermore, JNK inhibitor rescued some cells from arsenic trioxide-induced apoptosis, and this inhibitor decreased the levels of O(2)(*-) and reduced the GSH depletion in these cells. In summary, we have demonstrated that arsenic trioxide potently generates ROS, especially O(2)(*-), in As4.1 juxtaglomerular cells, and Tempol, SOD, catalase, and JNK inhibitor partially rescued cells from arsenic trioxide-induced apoptosis through the up-regulation of intracellular GSH levels.  相似文献   

18.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

19.
20.
In addition to ultraviolet radiation, human skin is also exposed to infrared radiation (IR) from natural sunlight. IR typically increases the skin temperature. This study examined whether or not heat shock-induced ROS stimulates MMPs in keratinocyte HaCaT cells. In HaCaT cells, heat shock was found to increase the intracellular ROS levels, including hydrogen peroxide and superoxide. The heat shock treatment induced MMP-1 and MMP-9, but not MMP-2, at the mRNA and protein levels. Moreover, heat shock caused the rapid activation of the three distinct MAPKs, ERK, JNK, and p38 kinase. The heat shock-induced expression of MMP-1 and MMP-9 was significantly suppressed by a pretreatment with the antioxidant NAC or catalase. On the other hand, SOD inhibited heat shock-induced activity of MMP-9 induction, but not MMP-1. A pretreatment with NAC or catalase, but not SOD, attenuated the phosphorylation of ERK, JNK, and p38 kinase by heat shock. The potential sites of ROS generation by heat shock along with its role in the heat shock-induced expression of MMP-1 and MMP-9 were next analyzed. These results indicate that heat shock-induced ROS is promoted via NADPH oxidase, xanthine oxidase, and mitochondria. Indeed, the NADPH oxidase and xanthine oxidase activities were increased by heat shock. Overall, the ROS produced by heat shock may play an important role in the heat shock-induced activation of MAPKs, which can induce MMP-1 and-9 expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号