首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
经磷脂酶A2 去脂的肌质网Ca2 + - ATPase 重组于不同比例的二油酰磷脂酰胆碱(Dioleoylphophatidylcholine,DOPC) 和二油酰磷脂酰乙醇胺(Dioleoylphophatidylethanolamine,DOPE) 形成脂酶体,研究了不同磷脂环境中Ca2 + - ATPase 的ATP 水解和Ca2 + 转运活力。结果表明,DOPC 和DOPE 分别有利于ATP 水解和Ca2 + 的转运,DOPE 可以增强Ca2 + - ATPase 的ATP水解和Ca2 + 转运之间的偶联效率。利用内源荧光、荧光淬灭及Forster 能量转移原理测定Ca2 + -ATPase 相应的构象变化, 发现随着DOPE/ DOPC 比例的改变使Ca2 + - ATPase 构象发生相应的变化。  相似文献   

2.
利用H+-ATP酶复合体(也称ATP合成酶)中的Fo的色氨酸荧光,观察了复合体中F1结合ATP或ADP(酶蛋白与底物分子比为1:1)时,Fo的荧光猝灭常数的变化(用竹红菌乙作为膜区蛋白荧光的猝灭剂)结果表明F1结合ATP或ADP时Fo可得到不同的猝灭常数(Ksv),也就是Fo会产生不同的构象变化。加入二价金属离子起动ATP水解反应结束后:ATP+H2O→ADP+Pi,这时可以在Fo观察到与ADP加Mg2+时相同猝灭常数Ksv;用荧光强度随时间进程变化的实验可观察到F1水解过程中导致Fo构象变化的动力学过程。这些结果说明了H+-ATP酶复合体ATP合成的过程中F1与Fo之间存在着构象之间的通信与传递。  相似文献   

3.
用2μg/ml玉米素溶液预处理叶绿体或在光活化前于活化液中加入2μg/ml玉米素溶液,观察到玉米素能促进叶绿体膜上耦联因子DTT光活化Mg2+-ATPase及Mg2+GTPase的活力.且对GTPase的促进比例常较ATPase的大些。王米素对OG活化可溶性CF1Mg2+-ATPase活力同样表现出促进作用。用玉米素预处理CF1-β亚基(含微量CF1-α亚基)也观察到它能促进CF1-β亚基催化的Mg2+-ATPase活力。这些结果表明,玉米素在CF1上的作用部位至少有一个在β亚基或α.β亚基交界处调节其催化功能的。  相似文献   

4.
莱氏衣原体膜上Mg~(2+)-ATPase用DOC溶解后,经Sepharose-6B和DEAE-CelluloseDE-52离子交换柱,得到了部分纯化的Mg~(2+)ATPase,并将此ATPase与不同极性头部的磷脂和膜糖脂重组,研究了不同的极性头部的磷脂和膜糖脂对ATPase活性的影响。此酶的活性不依赖酸性磷脂,PG、DPG、大豆磷脂等明显抑制酶活性,中性磷脂DMPC、PE、PC则能增加酶活性,其中尤以非双层脂PE的作用最为明显。从莱氏衣原体膜上提取的糖脂(MGDG,DGDG)单独和ATPase重组时,酶活性增加并不明显,当MGDG和DGDG以等比例混合时,能大大地增加酶活性。这表明Mg~(2+)-ATPase的活性很大程度上与磷脂的表面电荷及磷脂的组成相关。  相似文献   

5.
用2μg/ml玉米素溶液预处理叶绿体或在光活化前于活化液中加入2μg/ml玉米素溶液,观察到玉米素能促进叶绿体膜上耦联因子DTT光活化Mg^2+-ATPase及Mg^2+-GTPase的活力,且对GTPase的促进比例常较ATPase的大些。玉米素对OG活化可溶性CF1Mg^2+-ATPase活力同样表现出促进作用。用玉米素预处理CF1-β亚基(含微量CF1-α亚基)也观察到它促进CF1-β亚基催  相似文献   

6.
Na2SO3对CF1-ATPase活力的促进作用与酶所处状态有关。CF0降低CF1对Na2SO3的亲和力和Na2SO3促进的最大反应速率。在Na2SO3作用下,膜上CF1-ATPase的活化能高于游离的。膜上和游离CF1-ATPase的γ亚基上二硫键的还原可以提高Na2SO3对酶活力的促进作用。Na2SO3对甲醇活化的CF1-ATPase活力的促进作用只有在甲醇活化的亚适浓度下才能充分表现出来。Na2SO3对Mg2+抑制的解除作用因CF1-ATPase处于不同活化状态而不同。  相似文献   

7.
利用圆二色性光谱,检测了纯化的大豆液泡膜H^+-ATPase在不同条件下蛋白二级结构的变化。液泡膜H^+-ATPase的圆二色光谱对温度敏感,25℃、37℃分别保温10分钟20分钟,208nm和222nm双负峰变小,酶蛋白α-螺旋含量减少,与25℃相比较,37℃保温时酶蛋白构象的变化更为剧烈、迅速。不同磷酸数目的腺苷酸处理,液泡膜H^+-ATPase的α-螺旋含量均降低,降低程度为ADP>AMP>  相似文献   

8.
比较了菠菜和蚕豆叶绿体的光合磷酸化活力以及由不同活化方法活化的叶绿体及可溶CF1的Mg^2+-ATPase和Ca^2+-ATPase的活力,观测到两种叶绿体ATPase的合成和水解ATP的功能有明显差异。从两种叶绿体CF1的SDS-PAGE图谱上可见蚕豆CF1的ε亚基分子量明显上于菠菜的,蚕豆CF1的α和β亚基间分子量的差别也比菠菜的小。  相似文献   

9.
Na2SO3对热-DTT活化的游离CF1及类囊体膜上CF1-ATPase活力均有显著的促进作用,NaHCO3亦有明显的促进作用。Na2SO3和NaHCO3的促进作用与它们解除Mg2+的抑制作用有关。从NaHCO3和Na2SO3及它们与Mg2+之间的竞争性关系,表明三者是结合在酶的同一部位上。Na2SO3可明显降低热-DTT活化的游禹CF1-ATPase催化反应的活化能,这可能与促进产物ADP的释放有关。  相似文献   

10.
Na2SO3和NaHCO3对叶绿体CF1—ATPase活力作用的机制   总被引:1,自引:0,他引:1  
Na2SO3对热-DTT活化的游离CF1及类囊体膜上CF1-ATPase活力均有显著的促进作用,NaHCO3亦有明显的促进作用,Na2SO3和NaHCO3的促进作用与它们解除Mg^2+的抑制作用有关,从NaHCO3和Na2SO3及它们与Mg^2+之间的竞争性关系。表明三者是结合在酶的同一部位上。Na2SO3可明显降低热-DTT活化的游离CF-ATPase催化反应的活化能,这可能与促进产物ADP的翻  相似文献   

11.
利用ADP和放射性磷直接合成ATP的方法,研究了无机磷(Pi)和叠氮钠对猪心线粒体ATP合成酶(F1FO-ATPase)ATP合成活性的影响.结果发现无机磷除作为合成ATP的底物参与F1FO-ATPase的合成反应外,还对F1FO-ATPase的合成活性呈现抑制作用,在1 mmol/L ADP存在时,随着Pi浓度由0.01~10 mmol/L增加,抑制合成作用越来越强.与叠氮钠在低浓度时(小于1 mmol/L)只抑制ATP水解,不影响ATP合成的观点不同.实验结果显示0.1 mmol/L叠氮钠表观激活F1FO-ATPase的ATP合成活性,且激活程度与反应体系中所加Pi的浓度呈负相关.当固定Pi浓度(0.1 mmol/L)后,随着叠氮钠浓度的增加表观激活程度也在变化,叠氮钠与磷浓度相等时表观激活程度最大,直至叠氮钠浓度接近0.5 mmol/L时,开始呈现表观抑制现象,叠氮钠浓度高于1 mmol/L之后,就出现解偶联现象.  相似文献   

12.
利用H^+-ATP酶复合中的Fo的色氨酸荧光,观察了复合体中F1结合ATP或ADP时,Fo的荧光猝灭常数的变化结果表明F1结合ATP或ADP时Fo可得到不同的猝来常数,也就是Fo会产生不同的构象变化。这些结果说明了H^+ATP酶合ATP合成的过程中F1与Fo之间存在着构象之间的通信与传递。  相似文献   

13.
Sarcoplasmic reticulum membrane vesicles from rabbit skeletal muscle were treated with iodoacetamide (IAA) at pH 7.0 and 30 degrees C. At 1.0 mM IAA, 1 mol of IAA per mol of ATPase peptide was bound in 1 h. Under these conditions, IAA was attached specifically to the B-tryptic fragment portion of the peptide. The binding of IAA did not affect the Ca2+-transporting activity of ATPase. Three fluorescent derivatives of iodoacetamide, 5-(2-acetamidoethyl)aminonaphthalene-1-sulfonate (IAEDANS), 5-iodoacetamido fluorescein (IAF), and 5-iodoacetamido eosin (IAE), were also tested for reactivity toward sarcoplasmic reticulum ATPase at 30 degrees C and pH 7.0. In 1 h at 50 microM concentration, each of these fluorescent labels modified ATPase to a labeling density of 1 mol per mol of ATPase. Neither IAEDANS nor IAF at this labeling density affected Ca2+-transporting activity, but IAE reduced it to 20% of the untreated control. The target site of IAEDANS at this labeling density was located exclusively on the B-fragment portion, as was the case with IAA, but IAF label was found on both A1 and B fragments after limited tryptic digestion. IAEDANS was used as a B-fragment portion-directed conformational probe of Ca2+-transport ATPase, and an increase in fluorescence intensity accompanying E1Ca-P formation was detected. The fluorescence enhancement was abolished when E1Ca-P X ADP beta S was formed by adding ADP beta S to preformed E1Ca-P. This suggests that the conformation of ATPase in the neighborhood of the IAEDANS binding site may be altered in response to the dissociation of ADP from the phosphorylated intermediate.  相似文献   

14.
In order to elucidate the molecular basis of energy transduction by myosin as a molecular motor, a fluorescent ribose-modified ATP analog 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl]-ATP (NBD-ATP), was utilized to study the conformational change of the myosin motor domain during ATP hydrolysis using the fluorescence resonance energy transfer (FRET) method. The FRET efficiency from the fluorescent probe, BD- or AD-labeled at the reactive cysteine residues, SH1 (Cys 707) or SH2 (Cys697), respectively, to the NBD fluorophore in the ATP binding site was measured for several transient intermediates in the ATPase cycle. The FRET efficiency was greater than that using NBD-ADP. The FRETs for the myosin.ADP.AlF4- and myosin.ADP.BeFn ternary complexes, which mimic the M*.ADP.P(i) state and M.ATP state in the ATPase cycle, respectively, were similar to that of NBD-ATP. This suggests that both the SH1 and SH2 regions change their localized conformations to move closer to the ATPase site in the M*.ATP state and M**.ADP.P(i) state than in the M*.ADP state. Furthermore, we measured energy transfer from BD in the essential light chain to NBD in the active site. Assuming the efficiency at different states, myosin adopts a conformation such that the light chain moves closer to the active site by approximately 9 A during the hydrolysis of ATP.  相似文献   

15.
The interaction of Mg2+ with nucleotide-washed F0.F1 ATPase from pig heart was studied. Mg2+ had no effect on nucleotide-washed F0.F1 ATPase, but it competitively inhibited the hydrolytic activity of washed F0.F1 ATPase preincubated with ADP and slightly activated the hydrolytic activity of washed F0.F1 ATPase preincubated with ATP. In the last two cases, it revealed negative cooperativity. The effect of Mg2+ on F0.F1 ATPase is therefore closely related to the characteristics of the nucleotide binding sites on mitochondrial F0.F1 ATPase.  相似文献   

16.
The interactions between ADP, Mg2+, and azide that result in the inhibition of the chloroplast F1 ATPase (CF1) have been explored further. The binding of the inhibitory Mg2+ with low Kd is shown to occur only when tightly bound ADP is present at a catalytic site. Either the tightly bound ADP forms part of the Mg(2+)-binding site or it induces conformational changes creating the high-affinity site for inhibitory Mg2+. Kinetic studies show that CF1 forms two catalytically inactive complexes with Mg2+. The first complex results from Mg2+ binding with a Kd for Mg2+ dissociation of about 10-15 microM, followed by a slow conversion to a complex with a Kd of about 4 microM. The rate-limiting step of the CF1 inactivation by Mg2+ is the initial Mg2+ binding. When medium Mg2+ is chelated with EDTA, the two complexes dissociate with half-times of about 1 and 7 min, respectively. Azide enhances the extent of Mg(2+)-dependent inactivation by increasing the affinity of the enzyme for Mg2+ 3-4 times and prevents the reactivation of both complexes of CF1 with ADP and Mg2+. This results from decreasing the rate of Mg2+ release; neither the rate of Mg2+ binding to CF1 nor the rate of isomerization of the first inactive complex to the more stable form is affected by azide. This suggests that the tight-binding site for the inhibitory azide requires prior binding of both ADP and Mg2+.  相似文献   

17.
Interaction of azide with beef heart mitochondrial ATPase   总被引:1,自引:0,他引:1  
This study examined the inhibition of azide as a probe of the magnesium regulation of beef heart mitochondrial ATPase (F1) catalysis. Azide elicited a slow hysteretic effect on both ATP and ITP hydrolysis of F1. This hysteretic effect was shown to be due to the consecutive binding of magnesium and azide, and to be independent of catalytic turnover. The azide binding site was also shown to be separate from the anion binding HCO3- site on F1. The results presented indicate that metal binding is important in the inhibition of the hydrolytic activity and regulation of F1. A model is presented which is consistent with the hysteretic inhibition of F1 by azide, in which there is a slow equilibration between free enzyme and the enzyme-magnesium-azide complex.  相似文献   

18.
Sulfate is a partial inhibitor at low and a non-essential activator at high [ATP] of the ATPase activity of F(1). Therefore, a catalytically-competent ternary F(1) x ATP x sulfate complex can be formed. In addition, the ANS fluorescence enhancement driven by ATP hydrolysis in submitochondrial particles is also stimulated by sulfate, clearly showing that the ATP hydrolysis in its presence is coupled to H(+) translocation. However, sulfate is a strong linear inhibitor of the mitochondrial ATP synthesis. The inhibition was competitive (K (i) = 0.46 mM) with respect to Pi and mixed (K (i) = 0.60 and K'(i) = 5.6 mM) towards ADP. Since it is likely that sulfate exerts its effects by binding at the Pi binding subdomain of the catalytic site, we suggest that the catalytic site involved in the H(+) translocation driven by ATP hydrolysis has a more open conformation than the half-closed one (beta(HC)), which is an intermediate in ATP synthesis. Accordingly, ATP hydrolysis is not necessarily the exact reversal of ATP synthesis.  相似文献   

19.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号