首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Many members of the type II nuclear receptor subfamily function as heterodimers with the retinoid X receptor (RXR). A permissive heterodimer (e.g. peroxisome proliferator-activated receptor/RXR) allows for ligand binding by both partners of the receptor complex. In contrast, RXR has been thought to be incapable of ligand binding in a nonpermissive heterodimer, such as that of thyroid hormone receptor (TR)/RXR, where it has been referred to as a silent partner. However, we recently presented functional evidence suggesting that RXR in the TR/RXR heterodimer can bind its natural ligand 9-cis-RA in cells. Here we extended our study of the interrelationship of TR and RXR. We examined the potential modulatory effect of RXR and its ligand on the activity of TR, primarily using a Gal4-TR chimera. This study led to several novel and unexpected findings: 1) heterodimerization of apo-RXRalpha (in the absence of 9-cis-RA) with Gal4-TR inhibits T3-mediated transactivation; 2) the inhibition of Gal4-TR activity by RXRalpha is further enhanced by 9-cis-RA; 3) two different RXR subtypes (alpha and beta) differentially modulate the activity of Gal4-TR; 4) the N-terminal A/B domains of RXR alpha and beta are largely responsible for their differential modulation of TR activity; and 5) the RXR ligand 9-cis-RA appears to differentially affect T3-mediated transactivation from the Gal4-TR/RXRalpha (which is inhibited by 9-cis-RA) and TRE-bound TR/RXRalpha (which is further activated by 9-cis-RA) heterodimers. Taken together, these results further support our recent proposal that the RXR component in a TR/RXR heterodimer is not silent and, more importantly, reveal novel aspects of regulation of the activity of the TR/RXR heterodimer by RXR and RXR ligand.  相似文献   

4.
5.
6.
We have investigated ligand-dependent negative regulation of the thyroid-stimulating hormone beta (TSHbeta) gene. Thyroid hormone (T3) markedly repressed activity of the TSHbeta promoter that had been stably integrated into GH(3 )pituitary cells, through the conserved negative regulatory element (NRE) in the promoter. By DNA affinity binding assay, we show that the NRE constitutively binds to the histone deacetylase 1 (HDAC1) present in GH(3 )cells. Significantly, upon addition of T3, the NRE further recruited the thyroid hormone receptor (TRbeta) and another deacetylase, HDAC2. This recruitment coincided with an alteration of in vivo chromatin structure, as revealed by changes in restriction site accessibility. Supporting the direct interaction between TR and HDAC, in vitro assays showed that TR, through its DNA binding domain, strongly bound to HDAC2. Consistent with the role for HDACs in negative regulation, an inhibitor of the enzymes, trichostatin A, attenuated T3-dependent promoter repression. We suggest that ligand-dependent histone deacetylase recruitment is a mechanism of the negative-feedback regulation, a critical function of the pituitary-thyroid axis.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
We identified two thyroid hormone response elements (TREs) in the 2.5-kb, 5'-flanking region of the human gene encoding type 1 iodothyronine deiodinase (hdio1), an enzyme which catalyses the activation of thyroxine to 3,5,3'-triiodothyronine (T3). Both TREs contribute equally to T3 induction of the homologous promoter in transient expression assays. The proximal TRE (TRE1), which is located at bp -100, has an unusual structure, a direct repeat of the octamer YYRGGTCA hexamer that is spaced by 10 bp. The pyrimidines in the -2 position relative to the core hexamer are both essential to function. In vitro binding studies of TRE1 showed no heterodimer formation with retinoid X receptor (RXR) beta or JEG nuclear extracts (containing RXR alpha) and bacterially expressed chicken T3 receptor alpha 1 (TR alpha) can occupy both half-sites although the 3' half-site is dominant. T3 causes dissociation of TR alpha from the 5' half-site but increases binding to the 3' half-site. Binding of a second TR to TRE1 is minimally cooperative; however, no cooperativity was noted for a functional mutant in which the half-sites are separated by 15 bp, implying that TRs bind as independent monomers. Nonetheless, T3 still causes TR dissociation from the DR+15, indicating that dissociation occurs independently of TR-TR contact and that rebinding of a T3-TR complex to the 3' half-site occurs because of its slightly higher affinity. A distal TRE (TRE2) is found at bp -700 and is a direct repeat of a PuGGTCA hexamer spaced by 4 bp. It has typical TR homodimer and TR-RXR heterodimer binding properties. The TRE1 of hdio1 is the first example of a naturally occurring TRE consisting of two relatively independent octamer sequences which do not require the RXR family of proteins for function.  相似文献   

15.
Retinoic acid receptor (RAR) and thyroid hormone receptor (T3R) are structurally similar and can bind as homodimers or T3R-RAR heterodimers to a single synthetic DNA response element. The interaction of these two types of receptors with wild type elements, however, has not been systematically investigated. Promoter elements from genes regulated by retinoic acid (RA) or thyroid hormone (T3) were tested for response to T3 and RA in transient transfections in both JEG and COS cells. The elements were classified as primarily responsive to RA or to T3 or responsive to both ligands. Binding of highly purified RAR alpha and T3R alpha to the various elements was assessed using the gel shift assay. Those elements predominantly responsive to one ligand showed preferential binding to the appropriate receptor. A series of point mutations were introduced into the rat GH T3 response element to further define sequence requirements for response to both RA and T3. Down-mutations in any of the three hexamers (previously demonstrated to be required for full response to T3 and full binding of T3R) also decreased RA induction and RAR binding. However, only one of two sets of up-mutations for T3 response also increased RA induction, demonstrating differences in hexamer preference between RAR and T3R. Variation in spacing of the three hexamers did not influence RA vs. T3 induction or RAR vs. T3R binding according to the predictions of a simple hexamer spacing model. There was a strong correlation between the extent of T3R dimer binding and strength of T3 induction for a subset of elements studied in JEG cells (r = 0.97, P < 0.01) and a weaker but significant correlation in COS cells (r = 0.65, P < 0.05)). In contrast, RAR dimer binding by the wild type elements did not quantitatively correlate with RA induction in either JEG (r = 0.13, P > 0.05) or COS cells (r = 0.21, P > 0.05). These results suggests that RAR interacts with a heterodimer partner(s) which influences binding site specificity, whereas T3R heterodimer partner(s) is less likely to alter binding site recognition. The observed difference in COS and JEG cells as well as the weak T3R binding-function relationship of the malic enzyme element, however, suggest that the influence of T3R heterodimer partner(s) on binding site specificity is likely to vary with cell type and the specific element tested.  相似文献   

16.
17.
Mice deficient in thyroid hormone receptor α (TRα) display hypersensitivity to thyroid hormone (TH), with normal serum TSH but diminished serum T(4). Our aim was to determine whether altered TH metabolism played a role in this hypersensitivity. TRα knockout (KO) mice have lower levels of rT(3), and lower rT(3)/T(4) ratios compared with wild-type (WT) mice. These alterations could be due to increased type 1 deiodinase (D1) or decreased type 3 deiodinase (D3). No differences in D1 mRNA expression and enzymatic activity were found between WT and TRαKO mice. We observed that T(3) treatment increased D3 mRNA in mouse embryonic fibroblasts obtained from WT or TRβKO mice, but not in those from TRαKO mice. T(3) stimulated the promoter activity of 1.5 kb 5'-flanking region of the human (h) DIO3 promoter in GH3 cells after cotransfection with hTRα but not with hTRβ. Moreover, treatment of GH3 cells with T(3) increased D3 mRNA after overexpression of TRα. The region necessary for the T(3)-TRα stimulation of the hD3 promoter (region -1200 to -1369) was identified by transfection studies in Neuro2A cells that stably overexpress either TRα or TRβ. These results indicate that TRα mediates the up-regulation of D3 by TH in vitro. TRαKO mice display impairment in the regulation of D3 by TH in both brain and pituitary and have reduced clearance rate of TH as a consequence of D3 deregulation. We conclude that the absence of TRα results in decreased clearance of TH by D3 and contributes to the TH hypersensitivity.  相似文献   

18.
19.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号