首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Treatment of two-week old soybean (Glycine max (L.) Merr. cv.A2) seedlings with 250 µg of either soil-applied paclobutrazolor XE-1019 (also known as S-3307) altered diurnal leaf movementswithin 48 h. Leaf blade and petiole angles of primary leaves,relative to the horizontal, were consistently lower in the triazole-treatedseedlings compared to controls during the daylight hours. Atnight, leaves were completely folded down in both treated andcontrol seedlings, but leaves on treated seedlings reached thefolded down position approximately two hours earlier than controls.A single foliar spray of 6.0 mg-liter–1 GA3 counteractedthe triazole effects on leaf blade and petiole angles. (Received February 25, 1987; Accepted July 21, 1987)  相似文献   

2.
The crop growth rates and structures of three temperate foragegrasses Lolium perenne cv. S24, L. perenne cv. Reveille andFestuca arundinacea cv. S170, were examined in the field duringa summer growth period. The growth rates of the varieties wereremarkably similar at 7 g DM m–2 day–1. The angularstructures of the varieties were different and they varied duringthe experiment. However, these differences did not seem to affectcrop growth rates. Nevertheless, a decrease in the efficiencyof light energy conversion of approximately 24 per cent wasobserved after a change to a more prostrate form of canopy dueto lodging. There appeared to be an inverse relationship betweenthe number of tillers per unit ground area and the weight ofan individual stem. There were large numbers of relatively lighttillers in S24 whereas S1 70 had fewer but heavier tillers.Furthermore, S24 had many small leaves per unit ground areacompared with SI70 which had fewer longer leaves per groundarea and a slower rate of leaf appearance. There were diurnalchanges in the rates of leaf extension for all the varieties.The mean daily extension rates declined as the canopies developed.  相似文献   

3.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

4.
The relationship between the induction of tracheary elementdifferentiation and exogenous L-methionine was examined in agar-growncultures of soya bean callus initiated from Glycine max L. ‘Wayne’and ‘Clark 63’. Although Wayne is a normal cultivarsoya bean, seedlings of Clark 63 exhibit abnormal growth at25 °C due to exessive ethylene biosynthesis at this temperature.Wayne callus showed increased xylogenesis in the presence ofexogenous L-methionine (3.7 µg 1–1) in comparisonto IAA–KN controls at both 20 and 25 °C. Clark 63callus produced greater numbers of tracheary elements in responseto exogenous L-methionine only at 25 °C. The induction ofxylem differentiation was independent of the maintenance temperatureof the stock cultures of both cultivars. Xylogenesis initiatedbyan IAA–KN medium was inhibited by the addition of AgNO3(20 mg 1–1) to the extent of 76.5 per cent in cv. Wayneand 6 per cent in cv. Clark 63. The inhibitory effect was partiallyreversed by the addition of L-methionine (3.7 µg 1–1)to the IAA–KN–AgNO2 medium. These data support thehypothesis that xylogenesis in vitro involves auxin, cytokininand ethylene. differentiation, xylogenesis, L-methionine, ethylene, Glycine max L., soya bean, callus culture, auxin, kinetin  相似文献   

5.
The growth of lucerne var. Europe was examined in the fieldduring 1976. The annual dry matter production of unirrigatedlucerne during 1976, with no nitrogen fertilizer application,was 82.5 per cent greater than unirrigated S.24 perennial ryegrass,with a nitrogen application of 384 kg ha–1. The mean aboveground growth rate of lucerne was 7.3 g DM m–2 day–1between March and early June, of which stem material contributeda maximum of 76.5 per cent. Significant losses of leaves andstems occurred from the end of April, indicating a loss of potentialforage material. Nitrogen analyses of the above ground crop suggested that in56 days lucerne yielded 10.7 per cent more nitrogen than didS.24 annually with a nitrogen fertilizer addition of 280 kgha–1. Between 13 and 57 per cent of the daily photosynthate is translocatedbelow ground. Medicago sativaL, lucerne, dry matter production, canopy structure, nitrogen analyses  相似文献   

6.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):875-882
A long-term, steady-state 13CO2 assimilation system at a constantCO2 concentration with a constant 13C abundance was designedand applied to quantitative investigations on the allocationof photoassimilated carbon in nodulated soya bean (Glycine maxL.) plants. The CO2 concentration in the assimilation chamberand its 13C abundance were maintained constant with relativevariances of less than ±0.5 per cent during an 8-h assimilationperiod. At the termination of 8-h 13CO2 assimilation by plantsat early flowering stage, the currently assimilated carbon relativeto total tissue carbon (measured by the degree of isotopic saturation)were for young leaves (including flower buds), 13.9 per cent;mature leaves, 15.7 per cent; stems+petioles, 5.9 per cent;roots, 5.4 per cent and nodules, 6.9 per cent, 48 h after theend of the 13CO2 assimilation period, they were 12.3, 7.5, 7.4,6.8 and 6.1 per cent, respectively. The treatment with a highconcentration of nitrate in the nutrient media significantlydecreased the allocation of 13C into nodules. Experiments on13CO2 assimilation by plants at the pod-filling stage were alsoconducted. Labelling by 13C was weaker than at the early floweringstage, but an intense accumulation of 13C into reproductiveorgans was observed. Glycine max L., nodulated soya bean plants, 13CO2 assimilation, carbon dynamics  相似文献   

7.
The effect of salt stress was studied on proline accumulationand the activities of proline metabolic pathway enzymes in seedlingand leaf tissue of two genetically stable lines (SR2P1-2 andSR3P6-2) of in vitro selected NaCl-tolerant plants and parentcultivar Prakash of Brassica juncea L. Salt stress caused differentialenhancement in proline level in both seedlings and leaf tissueof plants at different developmental stages. The magnitude ofincrease in proline content was higher in SR3P6-2 line in seedlings(34 fold at 140 meq-1 NaCl) as well as leaves (16 fold at 40d after sowing at 100 meq-1 NaCl) compared to the parent cv.Prakash (29 fold in seedlings and five fold in leaves) and SR2P1-2(21 fold in seedlings and five fold in leaves) at similar stresslevels. Salt stress also resulted in changes in the activitiesof enzymes of proline metabolism. The activities of prolinebiosynthetic enzymes, pyrroline-5-carboxylate reductase andornithine aminotransferase, increased under salt stress bothin the seedlings and leaves. The range of increase in the activitiesof the two enzymes was relatively higher in SR3P6-2 (3·3-3·9fold) compared to the SR2P1-2 (1·8-2·8 fold) andparent cv. Prakash (1·5-2·8 fold). The activityof proline degrading enzyme, proline oxidase, decreased undersalt stress in both the tissues of all the lines; the reductionin activity was relatively greater in SR3P6-2 compared to SR2P1-2or cv. Prakash. The trend of changes in the enzyme activitieswas in tune with the increase in proline level, the magnitudeof change did not match the extent of increase in proline level.Copyright1995, 1999 Academic Press Brassica juncea L., NaCl-tolerant somaclones, proline content, ornithine aminotransferase, proline oxidase, pyrroline 5-carboxylate reductase  相似文献   

8.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

9.
Wheat (Triticum sativum L. cv. Nisu) grown in 0·5 Hoaglandssolution containing sub-toxic concentrations of S-ethyl dipropylthiocarbamate(EPTQ (0,0·0625,0·125,0·25, and 0·5p.p.m.w.) were exposed to 14C-ring labelled-2-chloro-4-ethylamino-6-isopropylamino-s-triazine(atrazine). Total 14C-atrazine absorption was increased to 182per cent in wheat treated with 0•5 p.p.m.w. EPTC when comparedto the EPTC untreated wheat. Detoxification and metabolism ofEPTC were not appreciably altered by EPTC pretreatment. Thisresulted in an increased atrazine content in the wheat leavespretreated with 0·5 p.p.m.w. EPTC that amounted to 370per cent of the unchanged atrazine present in the leaves ofEPTC untreated wheat.  相似文献   

10.
Changes in anatomical and physiological features, includingchanges in amount per unit area of anthocyanin and chlorophyll,in leaves of seedling mango (Mangifera indica L. cv. Irwin)trees were determined to understand what controls the rate ofphotosynthesis (Pn) at various stages of development. The youngleaves of seedling trees contained high concentrations of anthocyanin.During enlargement of leaves, the disappearance of anthocyaninand the accumulation of chlorophyll occurred concomitantly;the anthocyanin content began to decrease markedly once theleaf area had reached a maximum. During the early period ofleaf development, the thickness of mesophyll tissue decreasedtemporarily, but when the length of the leaf reached half thatof a mature leaf, the mesophyll began to thicken again. Smallstarch grains appeared in the chloroplasts of the young leavesand chloroplast nucleoids (ct-nuclei) were distributed throughoutthe chloroplasts. When leaves matured, ct-nuclei were displacedto the periphery of chloroplasts because of the accumulationof large starch grains. Compared with young leaves, green andmature leaves contained greater concentrations of ribulose bisphosphatecarboxylase-oxygenase (RuBisCO) protein. The results of immunocytochemicalexamination of RuBisCO under the light microscope reflectedthe results of electrophoresis measurements of RuBisCO. Pn waslow during the chocolate-coloured stage of early leaf development.In green and mature leaves Pn was higher; the average Pn was7·6 mg CO2 dm-2 h-1 under light at intensities above500 µmol m-2 s-1.Copyright 1995, 1999 Academic Press Mangifera indica L., mango leaf, chloroplast nucleoids, chloroplast ultrastructure, starch accumulation, anthocyanin, chlorophyll, DAPI staining, SDS-PAGE, immunocytochemical technique  相似文献   

11.
SHEEHY  J. E. 《Annals of botany》1977,41(3):593-604
The rates of canopy and individual leaf photosynthesis and 14Cdistribution for three temperate forage grasses Lolium perennecv. S24, L. perenne cv. Reveille and Festuc'a arundinacea cv.SI70 were determined in the field during a summer growth period.Canopy photosynthesis declined as the growth period progressed,reflecting a decline in the photosynthetic capacity of successiveyoungest fully expanded leaves. The decline in the maximum photosyntheticcapacity of the canopies was correlated with a decline in theirquantum efficiencies at low irradiance. Changes in canopy structureresulted in changes in canopy net photosynthesis and dark respiration.No clear relationships between changes in the environment andchanges in canopy net photosynthesis and dark respiration wereestablished. The relative distributions of 14C in the shootsof the varieties gave a good indication of the amount of drymatter per ground area in the varieties.  相似文献   

12.
STEER  B. T. 《Annals of botany》1971,35(5):1003-1015
In Capsicum frutescens L. cv. California Wonder the specificleaf weight (dry weight per unit laminar area) at leaf unfoldingis three times higher in the eighth leaf than in the first leafproduced. Intermediate leaves exhibit a trend between the twoThe change in specific leaf weight during laminar expansionis greatest in leaf 1 and least (sometimes zero) in leaf 8.Large changes in specific leaf weight during laminar expansionare associated with a large degree of palisade cell expansion,while leaves showing smaller rates of change have less palisadecell expansion but cell division is more evident. At leaf unfoldingthe fraction I protein content per unit laminar area is higherin upper than in lower leaves. Ribulose diphosphate carboxylaseactivity per unit laminar area and 14CO2 fixation per unit laminararea have a similar pattern of development in all leaves andshow no correlation with the changes in specific leaf weight.The peak of activity in all leaves occurs when the laminar areais 10 cm2. These results are compared with previous data onlaminar expansion and are seen as in accord with current ideason leaf growth.  相似文献   

13.
Indol-3yl-acetic acid (IAA) applied to sterns of Phaseolus vulgarisseedlings, decapitated above primary leaves, enhanced the mobilizationof 14C-metabolites to the treated stumps and this effect wasapparent within 3–6 h of applying the hormone. More than90 per cent of the total 14C-activity transported to the stumpswas detected in the alcohol-soluble extracts. In all treatments,less than 5 per cent of the 14C-photosynthate exported fromthe primary leaves was translocated upwards. Accumulation of14C-activity was also increased when the IAA was applied laterallyto intact internodes. This effect was obtained when 14C wassupplied either above or below the point of hormone application.By selective heat girdling, it was shown that the auxin affected14C transport when either the root ‘sink’ was removedor transpiratory flow of water through the treated internodewas maintained. Decapitated stems treated with plain lanolinfor 3 d were found to retain their responsiveness to auxin interms of enhanced metabolite transport. Heat-girdling experimentsand estimates of 14C transport velocity suggested that mostof the 14C movement was restricted to the phloem of treatedstumps. Similar effects of IAA on a transport in excised stemsegments of Phaseolus vulgaris were observed.  相似文献   

14.
Dunlap, J. R. 1988. Regulation of ACC-dependent ethylene productionby excised leaves from normal and albino Zea mays L. seedlings.—J.exp. Bot. 39: 1079–1089. Albino corn (Zea mays L.) seedlings lacking natural leaf pigmentswere obtained by germinating seeds treated with fluridone, aninhibitor of carotenoid biosynthesis. Basal rates of ethyleneproduction were less than 2.0 nl g–1 fr. wt h–1in both treated (albino) and untreated (normal) leaves but increasedby 10- to 20-fold in the presence of added ACC. ACC-dependentethylene production (ADEP) was inhibited by cobalt or cyanideions and stimulated by NaHCO3, CO2 and light. ADEP in both tissueswas stimulated by glucose, fructose, galactose and sucrose.The accumulation of respiratory CO2 did not account for thecarbohydrate response. The decline in the ADEP characteristicof albino leaf tissue was slowed by incubation in the presenceof sucrose. IAA and ABA stimulated ADEP in normal leaves butinhibited ADEP in albino leaves. Sucrose-stimulated ADEP wasinhibited in albino leaf tissue treated with IAA or ABA indicatinga possible role for the chloroplast in carbohydrate-facilitatedADEP. However, results from this study suggest that chloroplastsperform a function in the regulation of ethylene productionby leaf tissue that extends beyond merely influencing internallevels of CO2. In the absence of detectable ACC, EFE was responsiblefor the entire series of responses expressed in regulation ofethylene biosynthesis by corn seedling leaf tissue. Key words: Corn, ethylene, sugars, phytohormones  相似文献   

15.
Young leaf segments of Zea mays L. seedlings were cultured onMurashige and Skoog's basal nutrient medium supplemented with2 mg l–1 2, 4-D and sub-cultured on medium containing8 mg l–1 2,4-D. Two types of callus tissues appeared—embryogenicand non-embryogenic. The embryogenic callus tissue producednumerous somatic embryos which on transfer to media containinglow amounts of 2,4-D or ABA produced plantlets. Callus tissuesexhibited embryogenic potential for more than 1 year. Zea mays L. cv. Ageti-76, Zea mays L. cv. N-L-D-Comp., maize, leaf, callus, somatic embryogenesis, regeneration  相似文献   

16.
M.7 apple rootstocks were used during the peak period of shootextension for comparisons of dry-matter production per unitleaf area between intact plants and others which had been partiallydefoliated. Dry-matter increment per unit leaf area over a 16-dayinterval was some 70 per cent higher in partially defoliatedplants than in controls. 14CO2 was supplied to designated leaves of comparable age andposition. Sample discs were taken from the ‘fed’leaves at intervals up to 9 days from supplying 14CO2. Translocationrates were estimated by comparison with leaves on a third setof plants whose petioles were steamed to prevent translocationimmediately on removal of the 14CO2 feeding chambers. Translocationrates in partially defoliated plants were enhanced some 30 percent compared with controls. It is suggested that features of the plant outside the studiedleaves may have contributed to the overall efficiency of assimilateproduction and utilization. Malus sylvestris L., apple, dry matter production, leaf efficiency, defoliation, translocation, assimilate distribution, sorbitol, sucrose  相似文献   

17.
Rice (Oryza sativa L. cv. Yamabiko) seedlings germinated underwater for 5 days contained small amounts of heme a and protohemebut no protochlorophyll(ide) [Pchl(ide)]. Levels of hemes andPchl(ide) increased rapidly upon transfer to air. When expressedin terms of fresh weight of tissue, hemes reached the levelsin aerobic controls after 24 h of contact with air, but Pchl(ide)did not. A comparison of the increases during 24-h adaptationto air in levels of heme a and Pchl(ide), which are specificto mitochondria and plastids, respectively, suggested that thedevelopment of mitochondria preceded that of plastids. The rateof synthesis of 5-aminolevulinic acid (ALA) was low in submergedseedlings, as compared to the rate in aerobic controls, butit increased during air adaptation. The sum of the amounts ofheme a, protoheme and Pchl(ide) increased in parallel with theamount of porphyrins, equivalent to the amount of ALA synthesizedduring the experimental period. When submerged seedlings thathad been pretreated with levulinic acid were exposed to air,no Pchl(ide) was formed. In contrast, Pchl(ide) accumulatedunder water when submerged seedlings were fed with ALA. Theseresults indicate that the synthesis of ALA, the limiting stepin the synthesis of Pchl(ide), is repressed under hypoxic conditions. 1 Present address: KRI International, Inc., Kyoto Research Park17, Chudoji Minami-machi, Shimogyo-ku, Kyoto, 600 Japan. 2 Present address: Research Institute for Bioresources, OkayamaUniversity, Kurashiki, 710 Japan.  相似文献   

18.
Determination of Nitrate Reductase Activity in Barley Leaves and Roots   总被引:4,自引:0,他引:4  
The inactivation of nitrate reductase in the leaves and rootsof barley (Hordeum vulgare L. cv. Mazurka) during and afterextracting was investigated. At 0 °C in the absence of casein,25 per cent of ‘total’. i.e. maximal in vitro, nitratereductase activity was lost during the 2 min extraction process,followed by a slower loss of activity while the extract wasstored in ice. Activity was maintained by adding a minimum of1 per cent casein to the extraction medium containing 0·1M phosphate (pH 7·5), 1 mM EDTA and 1 mM dithiothreitol.Nitrate reductase was stable for several hours in these extracts,but declined in a first order manner in the absence of dithiothreitol.Casein also prevented the initial loss while making root extracts,but had less effect during storage. Using casein and thiols, nitrate reductase activity in light,(as product of maximal in vitro rates and wt g–1) in leaveswas 98 per cent of the total activity in 31-day-old plants grownwith full nutrient in water culture and 60-day-old field-grownplants receiving no fertilizer. Field-grown plants, however,exhibited only 17 per cent of the activity of culture-grownplants. Nitrate reductase in leaves of barley plants grown in waterculture had a diurnal rhythm. During the first 3 h of the lightperiod, activity increased to 1·3 x the ‘dark’value. This was followed by a temporary decrease and then byanother increase to a maximum of 1·7 x the ‘dark’value, occurring about 8 h after illumination. Activity thendecreased during the rest of the light period and in darkness. Hordeum vulgare L., barley, nitrate reductase  相似文献   

19.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

20.
A study has been made of the dark metabolism of CO2 by elongatingfibres of Gossypium arboreum L. cv. LD 133 (a short staple type)and Gossypium hirsutum L. cv. LH 372 (a long staple type) atdifferent fibre ages. In both cultivars, phosphoenolpyruvatecarboxylasc, glutamate-oxalacetate transaminase and malate dehydrogenaseshow elevated activities during the period of rapid fibre growthand lowered activity with ageing. Malic enzyme activity increasesas extension growth levels off. Levels of K+ and malate riseduring rapid extension growth and fall as the rate of elongationdecreases. The results indicate that malate may act as an osmoticumand a counterion for K+ accumulation during rapid expansionof the fibres. Amounts of enzymes, K+ and malate are higherin the fibres of the long staple cultivar than the short staple.During the period of active elongation, K+/malate ratio is higherin the short staple cultivar. Key words: Gossypium hirsutum, CO2 metabolism, Fibre extension  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号