首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major soluble avian eye lens protein, delta crystallin, is highly homologous to the housekeeping enzyme argininosuccinate lyase (ASL). ASL is part of the urea and arginine-citrulline cycles and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. In duck lenses, there are two delta crystallin isoforms that are 94% identical in amino acid sequence. Only the delta2 isoform has maintained ASL activity and has been used to investigate the enzymatic mechanism of ASL. The role of the active site residues Ser-29, Asp-33, Asp-89, Asn-116, Thr-161, His-162, Arg-238, Thr-281, Ser-283, Asn-291, Asp-293, Glu-296, Lys-325, Asp-330, and Lys-331 have been investigated by site-directed mutagenesis, and the structure of the inactive duck delta2 crystallin (ddeltac2) mutant S283A with bound argininosuccinate was determined at 1.96 A resolution. The S283A mutation does not interfere with substrate binding, because the 280's loop (residues 270-290) is in the open conformation and Ala-283 is more than 7 A from the substrate. The substrate is bound in a different conformation to that observed previously indicating a large degree of conformational flexibility in the fumarate moiety when the 280's loop is in the open conformation. The structure of the S283A ddeltac2 mutant and mutagenesis results reveal that a complex network of interactions of both protein residues and water molecules are involved in substrate binding and specificity. Small changes even to residues not involved directly in anchoring the argininosuccinate have a significant effect on catalysis. The results suggest that either His-162 or Thr-161 are responsible for proton abstraction and reinforce the putative role of Ser-283 as the catalytic acid, although we cannot eliminate the possibility that arginine is released in an uncharged form, with the solvent providing the required proton. A detailed enzymatic mechanism of ASL/ddeltac2 is presented.  相似文献   

2.
Seibert AL  Liu J  Hanck DA  Blumenthal KM 《Biochemistry》2004,43(22):7082-7089
Anthopleurin B (ApB) is a type 1 sea anemone toxin, which binds to voltage-sensitive sodium channels (Na(V)'s), thereby delaying channel inactivation. Previous work from our laboratories has demonstrated that the structurally unconstrained region involving residues 8-17 of this polypeptide, designated the Arg-14 loop, is important for full toxin affinity (Seibert et al., (2003) Biochemistry 42, 14515). Within this region, important contributions are made by residues Arg-12 and Leu-18 (Gallagher and Blumenthal, (1994) J. Biol. Chem. 269, 254; Dias-Kadambi et al., (1996) J. Biol. Chem. 271, 23828). Moreover, replacement of glycine residues found at positions 10 or 15 of the loop by alanine has been shown to have profound, isoform-selective effects on toxin-binding kinetics (Seibert et al., (2003)Biochemistry 42, 14515). To thoroughly understand the importance of this entire region, the work described here investigates the contribution of ApB residues Asn-16, Thr-17, and Ser-19 to toxin affinity and isoform selectivity. Our results demonstrate that residues within and proximal to the C terminus of the Arg-14 loop are important modulators of ApB affinity for Na(V) channels, indicating that the loop and channel site 3 are likely in close contact. A comparison of the effects of multiple replacements at each position reveals that Asn-16 and Ser-19 are involved in binding, whereas Thr-17 is not. The fact that anionic replacements for Asn-16 or Ser-19 are highly deleterious for toxin binding strongly suggests that site 3 contains either formal anionic residues or regions of high electron density, which could be formed by aromatic clusters. These data represent the first indication of the presence of such residues or regions within Na(V) site 3.  相似文献   

3.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

4.
Tai CL  Pan WC  Liaw SH  Yang UC  Hwang LH  Chen DS 《Journal of virology》2001,75(17):8289-8297
The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3.  相似文献   

5.
6.
The crystal structure of the binary complex of non-activated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and its product 3-phospho-D-glycerate has been determined to 2.9-A resolution. This structure determination confirms the proposed location of the active site (Schneider, G., Lindqvist, Y., Br?ndén, C.-I., and Lorimer, G. (1986) EMBO J. 5, 3409-3415) at the carboxyl end of the beta-strands of the alpha/beta-barrel in the carboxyl-terminal domain. One molecule of 3-phosphoglycerate is bound per active site. All oxygen atoms of 3-phosphoglycerate form hydrogen bonds to groups of the enzyme. The phosphate group interacts with the sidechains of residues Arg-288, His-321, and Ser-368, which are conserved between enzymes from different species as well as with the main chain nitrogens from residues Thr-322 and Gly-323. These amino acid residues constitute one of the two phosphate binding sites of the active site. The carboxyl group interacts with the side chains of His-287, Lys-191, and Asn-111. Implications of the activation process for the binding of 3-phosphoglycerate are discussed.  相似文献   

7.
Hepatitis B virus (HBV) DNA was extracted from sera of six carriers with hepatitis B e antigen as well as antibody to hepatitis B surface antigen and sequenced within the pre-S regions and the S gene. HBV DNA clones from five of these carriers had point mutations in the S gene, resulting in conversion from Ile-126 or Thr-126 of the wild-type virus to Ser-126 or Asn-126 in three carriers and conversion from Gly-145 to Arg-145 in three of them; clones with Asn-126 or Arg-145 were found in one carrier. All 12 clones from the other carrier had an insertion of 24 bp encoding an additional eight amino acids between Thr-123 and Cys-124. In addition, all or at least some of the HBV DNA clones from these carriers had in-phase deletions in the 5' terminus of the pre-S2 region. These results indicate that HBV escape mutants with mutations in the S gene affecting the expression of group-specific determinants would survive in some carriers after they seroconvert to antibody against surface antigen. Carriers with HBV escape mutants may transmit HBV either by donation of blood units without detectable surface antigen or through community-acquired infection, which would hardly be prevented by current hepatitis B immuneglobulin or vaccines.  相似文献   

8.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

9.
Site-directed mutagenesis was performed on several areas of MutH based on the similarity of MutH and PvuII structural models. The aims were to identify DNA-binding residues; to determine whether MutH has the same mechanism for DNA binding and catalysis as PvuII; and to localize the residues responsible for MutH stimulation by MutL. No DNA-binding residues were identified in the two flexible loop regions of MutH, although similar loops in PvuII are involved in DNA binding. Two histidines in MutH are in a similar position as two histidines (His-84 and His-85) in PvuII that signal for DNA binding and catalysis. These MutH histidines (His-112 and His-115) were changed to alanines, but the mutant proteins had wild-type activity both in vivo and in vitro. The results indicate that the MutH signal for DNA binding and catalysis remains unknown. Instead, a lysine residue (Lys-48) was found in the first flexible loop that functions in catalysis together with the three presumed catalytic amino acids (Asp-70, Glu-77, and Lys-79). Two deletion mutations (MutHDelta224 and MutHDelta214) in the C-terminal end of the protein, localized the MutL stimulation region to five amino acids (Ala-220, Leu-221, Leu-222, Ala-223, and Arg-224).  相似文献   

10.
Localization of thrombomodulin-binding site within human thrombin   总被引:3,自引:0,他引:3  
A binding site for thrombomodulin on human thrombin (alpha-thrombin) was elucidated by identifying an epitope for a monoclonal antibody for thrombin (MT-6) which inhibited the activation of protein C by the thrombin-thrombomodulin complex by directly inhibiting the binding of thrombin to thrombomodulin. An 8.5-kDa fragment isolated by digestion of thrombin with Staphylococcus aureus V8 protease followed by reversed-phase high performance liquid chromatography (HPLC) and a peptide isolated by reversed-phase HPLC after reduction of the 8.5-kDa fragment, which was composed of three peptides linked by disulfide-bonds, bound directly to MT-6 and thrombomodulin. The amino acid sequence of the peptide coincided with the sequence of residues Thr-147 to Asp-175 of the B-chain of thrombin. A synthetic peptide corresponding to Thr-147 to Ser-158 of the B-chain inhibited the binding of thrombin to thrombomodulin. Elastase-digested thrombin, which was cleaved between Ala-150 and Asn-151, lost its binding affinity for both MT-6 and thrombomodulin. These findings indicate that the binding site for thrombomodulin is located within the sequence between Thr-147 and Ser-158 of the B-chain.  相似文献   

11.
The binding of the Epstein-Barr virus glycoprotein gp350 by complement receptor type 2 (CR2) is critical for viral attachment to B lymphocytes. We set out to test hypotheses regarding the molecular nature of this interaction by developing an enzyme-linked immunosorbent assay (ELISA) for the efficient analysis of the gp350-CR2 interaction by utilizing wild-type and mutant forms of recombinant gp350 and also of the CR2 N-terminal domains SCR1 and SCR2 (designated CR2 SCR1-2). To delineate the CR2-binding site on gp350, we generated 17 gp350 single-site substitutions targeting an area of gp350 that has been broadly implicated in the binding of both CR2 and the major inhibitory anti-gp350 monoclonal antibody (MAb) 72A1. These site-directed mutations identified a novel negatively charged CR2-binding surface described by residues Glu-21, Asp-22, Glu-155, Asp-208, Glu-210, and Asp-296. We also identified gp350 amino acid residues involved in non-charge-dependent interactions with CR2, including Tyr-151, Ile-160, and Trp-162. These data were supported by experiments in which phycoerythrin-conjugated wild-type and mutant forms of gp350 were incubated with CR2-expressing K562 cells and binding was assessed by flow cytometry. The ELISA was further utilized to identify several positively charged residues (Arg-13, Arg-28, Arg-36, Lys-41, Lys-57, Lys-67, Arg-83, and Arg-89) within SCR1-2 of CR2 that are involved in the binding interaction with gp350. These experiments allowed a comparison of those CR2 residues that are important for binding gp350 to those that define the epitope for an effective inhibitory anti-CR2 MAb, 171 (Asn-11, Arg-13, Ser-32, Thr-34, Arg-36, and Tyr-64). The mutagenesis data were used to calculate a model of the CR2-gp350 complex using the soft-docking program HADDOCK.  相似文献   

12.
Makde RD  Mahajan SK  Kumar V 《Biochemistry》2007,46(8):2079-2090
The Salmonella typhimurium PhoN protein is a nonspecific acid phosphatase and belongs to the phosphatidic acid phosphatase type 2 (PAP2) superfamily. We report here the crystal structures of phosphate-bound PhoN, the PhoN-tungstate complex, and the T159D mutant of PhoN along with functional characterization of three mutants: L39T, T159D, and D201N. Invariant active site residues, Lys-123, Arg-130, Ser-156, Gly-157, His-158, and Arg-191, interact with phosphate and tungstate oxyanions. Ser-156 also accepts a hydrogen bond from Thr-159. The T159D mutation, surprisingly, severely diminishes phosphatase activity, apparently by disturbing the active site scaffold: Arg-191 is swung out of the active site resulting in conformational changes in His-158 and His-197 residues. Our results reveal a hitherto unknown functional role of Arg-191, namely, restricting the active conformation of catalytic His-158 and His-197 residues. Consistent with the conserved nature of Asp-201 in the PAP2 superfamily, the D201N mutation completely abolished phosphatase activity. On the basis of this observation and in silico analysis we suggest that the crucial mechanistic role of Asp-201 is to stabilize the positive charge on the phosphohistidine intermediate generated by the transfer of phosphoryl to the nucleophile, His-197, located within hydrogen bond distance to the invariant Asp-201. This is in contrast to earlier suggestions that Asp-201 stabilizes His-197 and the His197-Asp201 dyad facilitates formation of the phosphoenzyme intermediate through a charge-relay system. Finally, the L39T mutation in the conserved polyproline motif (39LPPPP43) of dimeric PhoN leads to a marginal reduction in activity, in contrast to the nearly 50-fold reduction observed for monomeric Prevotella intermedia acid phosphatase, suggesting that the varying quaternary structure of PhoN orthologues may have functional significance.  相似文献   

13.
A structural model for the interaction of the LexA repressor DNA binding domain (DBD) with operator DNA is derived by means of Monte Carlo docking. Protein–DNA complexes were generated by docking the LexA repressor DBD NMR solution structure onto both rigid and bent B-DNA structures while giving energy bonuses for contacts in agreement with experimental data. In the resulting complexes, helix III of the LexA repressor DBD is located in the major groove of the DNA and residues Asn-41, Glu-44, and Glu-45 form specific hydrogen bonds with bases of the CTGT DNA sequence. Ser-39, Ala-42, and Asn-41 are involved in a hydrophobic interaction with the methyl group of the first thymine base. Residues in the loop region connecting the two β-sheet strands are involved in nonspecific contacts near the dyad axis of the operator. The contacts observed in the docked complexes cover the entire consensus CTGT half-site DNA operator, thus explaining the specificity of the LexA repressor for such sequences. In addition, a large number of nonspecific interactions between protein and DNA is observed. The agreement between the derived model for the LexA repressor DBD/DNA complex and experimental biochemical results is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Nucleotide sequence analysis revealed that the compensatory gyrA mutation in Escherichia coli DM750 affects DNA supercoiling by interchanging the identities of Ala-569 and Thr-586 in the DNA gyrase A subunit. These residues flank Arg-571, a site for trypsin cleavage that splits gyrase A protein between DNA breakage-reunion and DNA-binding domains. The putative interdomain locations of the DM750 mutation and that of E. coli DM800 (in gyrase B protein) suggests that these compensatory mutations may reduce DNA supercoiling activity by altering allosteric interactions in the gyrase complex.  相似文献   

15.
Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the basis of crystal structures and previous mapping studies, four sites (Glu-469/Arg-470, Met-490/Arg-491, His-495/Asn-496, and Arg-498/Thr-499; thimet oligopeptidase residues listed first) in their substrate-binding channels appear positioned to account for differences in specificity. Thimet oligopeptidase mutated so that neurolysin residues are at all four positions cleaves neurotensin at the neurolysin site, and the reverse mutations in neurolysin switch hydrolysis to the thimet oligopeptidase site. Using a series of constructs mutated at just three of the sites, it was determined that mutations at only two (Glu-469/Arg-470 and Arg-498/Thr-499) are required to swap specificity, a result that was confirmed by testing the two-mutant constructs. If only either one of the two sites is mutated in thimet oligopeptidase, then the enzyme cleaves almost equally at the two hydrolysis positions. Crystal structures of both two-mutant constructs show that the mutations do not perturb local structure, but side chain conformations at the Arg-498/Thr-499 position differ from those of the mimicked enzyme. A model for differential recognition of neurotensin based on differences in surface charge distribution in the substrate binding sites is proposed. The model is supported by the finding that reducing the positive charge on the peptide results in cleavage at both hydrolysis sites.  相似文献   

16.
Vaccinia virus NPH-II is the prototypal RNA helicase of the DExH box protein family, which is defined by six shared sequence motifs. The contributions of conserved amino acids in motifs I (TGVGKTSQ), Ia (PRI), II (DExHE), and III (TAT) to enzyme activity were assessed by alanine scanning. NPH-II-Ala proteins were expressed in baculovirus-infected Sf9 cells, purified, and characterized with respect to their RNA helicase, nucleic acid-dependent ATPase, and RNA binding functions. Alanine substitutions at Lys-191 and Thr-192 (motif I), Arg-229 (motif Ia), and Glu-300 (motif II) caused severe defects in RNA unwinding that correlated with reduced rates of ATP hydrolysis. In contrast, alanine mutations at His-299 (motif II) and at Thr-326 and Thr-328 (motif III) elicited defects in RNA unwinding but spared the ATPase. None of the mutations analyzed affected the binding of NPH-II to RNA. These findings, together with previous mutational studies, indicate that NPH-II motifs I, Ia, II, and VI (QRxGRxGRxxxG) are essential for nucleoside triphosphate (NTP) hydrolysis, whereas motif III and the His moiety of the DExH-box serve to couple the NTPase and helicase activities. Wild-type and mutant NPH-II-Ala genes were tested for the ability to rescue temperature-sensitive nph2-ts viruses. NPH-II mutations that inactivated the phosphohydrolase in vitro were lethal in vivo, as judged by the failure to recover rescued viruses containing the Ala substitution. The NTPase activity was necessary, but not sufficient, to sustain virus replication, insofar as mutants for which NTPase was uncoupled from unwinding (H299A, T326A, and T328A) were also lethal. We conclude that the phosphohydrolase and helicase activities of NPH-II are essential for virus replication.  相似文献   

17.
A gamma-carboxylation recognition site on the propeptide of the vitamin K-dependent blood coagulation proteins directs the carboxylation of glutamic acid residues by binding to the vitamin K-dependent carboxylase. To determine residues that define this site, we evaluated the effect of mutation of certain residues in the prothrombin propeptide on the extent of carboxylation. The prothrombin cDNA modified by site-specific mutagenesis was expressed in Chinese hamster ovary cells using a system that yields functional fully carboxylated prothrombin. The cell supernatants containing recombinant prothrombin were evaluated for the extent of gamma-carboxylation by immunoassay. Conformation-specific anti-prothrombin:Ca(II)-specific antibodies measure native completely carboxylated prothrombin; anti-prothrombin:total antibodies measure all forms of prothrombin, regardless of gamma-carboxyglutamic acid content. Mutation of His-18 to Gly, Val-17 to Ser, Leu-15 to Gly or Asp, or Ala-10 to Asp was associated with a partial (30-65%) inhibition of gamma-carboxylation. Mutation of Ala-14 to Ser or Ser-8 to Val did not inhibit gamma-carboxylation. From this and earlier work, residues whose mutation leads to a significant impairment of carboxylation include His-18, Val-17, Phe-16, Leu-15, and Ala-10. Residues whose mutation does not alter the carboxylation recognition site include Ala-14, Ser-8, Arg-4, and Arg-1. To determine the size of the recognition site, the in vitro carboxylation of propeptide-containing synthetic peptides was compared. A 28-residue peptide, based upon residues -18 to +10 of prothrombin, and a 54-residue peptide, based upon residues -18 to +36 of prothrombin, were carboxylated by partially purified bovine carboxylase with similar Km values of 2-5 microM. These results indicate that the gamma-carboxyglutamic acid-rich region of prothrombin makes a minimal contribution to carboxylase binding. A molecular surface of about five amino acids located within the propeptide appears to define the carboxylation recognition site on the precursor forms of the vitamin K-dependent proteins.  相似文献   

18.
Beta-lactamase of Bacillus licheniformis 749/C at 2 A resolution   总被引:8,自引:0,他引:8  
Two crystal forms (A and B) of the 29,500 Da Class A beta-lactamase (penicillinase) from Bacillus licheniformis 749/C have been examined crystallographically. The structure of B-form crystals has been solved to 2 A resolution, the starting model for which was a 3.5 A structure obtained from A-form crystals. The beta-lactamase has an alpha + beta structure with 11 helices and 5 beta-strands seen also in a penicillin target DD-peptidase of Streptomyces R61. Atomic parameters of the two molecules in the asymmetric unit were refined by simulated annealing at 2.0 A resolution. The R factor is 0.208 for the 27,330 data greater than 3 sigma (F), with water molecules excluded from the model. The catalytic Ser-70 is at the N-terminus of a helix and is within hydrogen bonding distance of conserved Lys-73. Also interacting with the Lys-73 are Asn-132 and the conserved Glu-166, which is on a potentially flexible helix-containing loop. The structure suggests the binding of beta-lactam substrates is facilitated by interactions with Lys-234, Thr-235, and Ala-237 in a conserved beta-strand peptide, which is antiparallel to the beta-lactam's acylamido linkage; an exposed cavity near Asn-170 exists for acylamido substituents. The reactive double bond of clavulanate-type inhibitors may interact with Arg-244 on the fourth beta-strand. A very similar binding site architecture is seen in the DD-peptidase.  相似文献   

19.
Nickel acquisition is necessary for urease activity, a major virulence factor of the human gastric pathogen Helicobacter pylori. The nickel permease NixA of H. pylori is a member of the single-component nickel-cobalt transporter family. To identify functionally relevant amino acids of NixA, single-site exchanges were introduced into NixA via PCR-based mutagenesis. This study investigated one of the recognition motifs for this family in transmembrane segment III and other conserved amino acids, mostly with possible nickel-binding capacities. The mutant alleles were expressed in Escherichia coli, and activity of the altered permeases was analyzed by measuring nickel accumulation and urease activity. Expression was checked by immunoblotting after sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a NixA-specific antibody. Replacement of Phe-75 and His-79-both part of the characteristic sequence motif-and of Asn-127, Thr-195, and Ser-197 with alanine abolished nickel uptake in the E. coli system. The results were unchanged if these amino acids were replaced with residues more similar to the original amino acid. The phenotype of the null mutants was independent of the culture medium. Mutation of Val-82, Tyr-242, Thr-260, His-181, and His-15 strongly affected uptake activity under nickel limitation on complex Luria-Bertani medium but had little effect in minimal medium. Eight other conserved amino acids (Ser-80, Ser-81, Phe-119, Trp-180, Tyr-183, Trp-244, Pro-249, and Asn-256) were found to be dispensable for the function of NixA. These results show that atypical nickel-binding amino acids play an important function in nickel uptake and that most of the essential amino acids are clustered in conserved motifs.  相似文献   

20.
In the present study, lactose permease mutants were isolated which have an enhanced recognition toward maltose (an alpha-glucoside) and diminished recognition for cellobiose (a beta-glucoside). Nine mutants were isolated from a strain encoding a wild-type permease (pTE18) and nine from a strain encoding a mutant permease which recognizes maltose (pB15). All 18 mutants were subjected to DNA sequencing, and it was found that all mutations are single base substitutions within the lac Y gene effecting single amino acid substitutions within the protein. From the pTE18 parent, substitutions involved Tyr-236 to Phe or His; Ser-306 to Thr; and six independent mutants in which Ala-389 was changed to Pro. From pB15, Tyr-236 was changed to Phe or Asn, Ser-306 to Thr or Leu, Lys-319 to Asn, and His-322 to Tyr, Asn, or Gln. All 18 mutants exhibited enhanced recognition for maltose (compared with the pTE18 strain) and a diminished recognition for cellobiose. In addition, all mutants showed a diminished recognition toward beta-galactosides as well. The Phe-236, His-236, Leu-306, Asn-319, Tyr-322, Asn-322, and Gln-322 mutants were completely defective in the uphill accumulation of methyl-beta-D-thiogalactopyranoside whereas the Asn-236, Thr-306, and Pro-389 mutants could effectively accumulate methyl-beta-D-thiogalactopyranoside against a concentration gradient. The mutants obtained in this study, together with previous lactose permease mutants, tend to be found on transmembrane segments, and those which are on the same transmembrane segment are often found three or four amino acids away from each other. This pattern is consistent with a protein structure in which important amino acid side chains project from several transmembrane segments in such a way as to form a hydrophilic channel for the recognition and transport of H+ and galactosides. It is proposed that the mechanism for H+/lactose cotransport is consistent with a "flanking gate" model in which the protein contains a single recognition site for galactosides within the channel which is flanked on either side by gates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号