首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the development of a specific spectrophotometric assay for the quantitative determination of lipase activity in Staphylococcus aureus. The assay is based on the rate of clearance of a tributyrin emulsion, and it can detect as little as 1.0 micrograms of purified Pseudomonas lipase per ml. By comparison with the reaction rates obtained with Pseudomonas lipase, we calculated that S. aureus PS54C and S6C produce approximately 15 and 60 micrograms of extracellular lipase per ml, respectively. Neither PS54, which is lysogenized with the converting bacteriophage L54a and is consequently lipase negative (Lip-), nor KS1905, a Lip- transpositional mutant of strain S6C, was positive in our spectrophotometric assay. The specificity of the spectrophotometric tributyrin assay was confirmed with a triolein plate assay; supernatants from S6C and PS54C hydrolyzed triolein, while supernatants from PS54 and KSI905 did not. In contrast to the results of the spectrophotometric tributyrin assay, all enzyme preparations tested (including commercially purified esterase) were positive when examined by a tributyrin plate assay. The lack of specificity in the tributyrin plate assay emphasizes the need to interpret the results of tributyrin lipolysis kinetically for assessing lipase activity in S. aureus.  相似文献   

2.
A Sayari  N Agrebi  S Jaoua  Y Gargouri 《Biochimie》2001,83(9):863-871
Staphylococcus simulans strain secretes a non-induced lipase in the culture medium. Staphylococcus simulans lipase (SSL), purified to homogeneity, is a tetrameric protein (160 kDa) corresponding to the association of four lipase molecules. The 30 N-terminal amino acid residues were sequenced. This sequence is identical to the one of Staphylococcus aureus PS54 lipase (SAL PS54) and exhibits a high degree of homology with Staphylococcus aureus NCTC8530 lipase (SAL NCTC8530), Staphylococcus hyicus lipase (SHL) and Staphylococcus epidermis RP62A lipase (SEL RP62A) sequences. But the cloning and sequencing of the part of the gene encoding the mature lipase show some differences from SAL PS54 sequence, which suggest that it is a new sequence. The lipase activity was maximal at pH 8.5 and 37 degrees C. SSL is able to hydrolyze triacylglycerols without chain length specificity. A specific activity of about 1000 U/mg was measured on tributyrin or triolein as substrate at 37 degrees C and at pH 8.5 in the presence of 3 mM CaCl(2). In contrast to other staphylococcal lipases previously characterized, Ca(2+) is not required to express the activity of SSL. SSL was found to be stable between pH 4 and pH 9. The enzyme is inactivated after a few minutes when incubated at 60 degrees C. Using tripropionin as substrate, SSL does not present the interfacial activation phenomenon. In contrast to many lipases, SSL is able to hydrolyze its substrate in the presence of bile salts or amphiphilic proteins.  相似文献   

3.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

4.
Lipoprotein lipase was expressed in Chinese hamster ovary (CHO) cells transfected with human lipoprotein lipase cDNA. The lipoprotein lipase retained tributyrin, water-soluble substrate, hydrolyzing activity (esterase activity). The catalytic action of this enzyme was studied by monitoring the esterase activity. The esterase activity was enhanced 4.5-fold by the addition of triolein emulsified with Triton X-100. This process was named interfacial activation. Treatment of LPL with trypsin (100 micrograms/ml, 37 degrees C for 10 min) caused the loss of the triolein hydrolyzing activity without that of the esterase activity. The esterase activity of trypsin-treated LPL was not enhanced by the addition of the triolein emulsion. The trypsin-treated LPL retained the ability to bind to very low density lipoproteins (VLDL). These results are consistent with the idea that LPL has a catalytic site and a lipid interface recognition site, and that the enzyme undergoes interfacial activation, in which the concealed catalytic site is revealed after the enzyme binds to the surface. Based on this hypothesis, the results obtained suggest that trypsin nicking may impair the interfacial activation process and cause the loss of the lipase activity.  相似文献   

5.
Human serum carboxylesterase (EC 3.1.1.1), purified by affinity chromatography on trimethylammonium anilinium-Sepharose, hydrolyzed the short-chain fatty acid ester tributyrin (40 mumol/mg protein per h), but scarcely hydrolyzed the long-chain fatty acid ester triolein (less than 0.2 mumol/mg protein per h). Phospholipids enhanced triolein hydrolysis by carboxylesterase to various extents, cardiolipin causing the most enhancement (2.5 mumol/mg protein per h). Phosphatidylserine and phosphatidylinositol also enhanced carboxylesterase-catalyzed hydrolysis of triolein (450-980 nmol/mg protein per h). The optimal pH for tributyrin hydrolysis was pH 8.0, but the pH range for triolein hydrolysis was broad, being pH 4.5-7.5. The rates of hydrolyses of monoolein, diolein and triolein by carboxylesterase in the absence and presence of 100 micrograms/ml cardiolipin were 3.9, 0.5 and 0.2 mumol/mg esterase per h and 2.0, 0.6 and 4.0 mumol/mg protein per h, respectively. Thus, on addition of cardiolipin, triolein hydrolysis was enhanced, but tributyrin hydrolysis was reciprocally decreased. Triton X-100 (0.1%) and NaCl (1.0 M) decreased triolein hydrolysis, but did not decrease tributyrin hydrolysis. Mercaptoethanol decreased triolein hydrolysis, but not tributyrin hydrolysis. These results suggest that cardiolipin modifies the interaction of carboxylesterase with substrates in such a way as to facilitate its interaction with a hydrophobic substrate, and that disulfide bonding might be involved in the substrate recognition site.  相似文献   

6.
An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.  相似文献   

7.
Biochemical and molecular characterization of Staphylococcus xylosus lipase   总被引:1,自引:0,他引:1  
The Staphylococcus xylosus strain secretes a non-induced lipase in culture medium: S. xylosus lipase (SXL). Pure SXL is a monomeric protein (43 kDa). The 23 N-terminal amino acid residues were sequenced. This sequence is identical to that of Staphylococcus simulans lipase (SSL); in addition, it exhibits a high degree of homology with Staphylococcus aureus lipase (SAL NCTC 8530) sequences. The cloning and sequencing of gene part encoding the mature lipase shows one nucleotide difference with SSL, which corresponds to the change of one residue at a position 311. The lipase activity is maximal at pH 8.2 and 45 degrees C. SXL is able to hydrolyse triacylglycerols without chain length specificity. The specific activity of about 1900 U/mg was measured using tributyrin or triolein as substrate at pH 8.2 and at 45 degrees C in the presence of 2 mM CaCl2. In contrast to some previously characterized staphylococcal lipases, Ca2+ is not required to trigger the activity of SXL. SXL was found to be stable between pH 5 and pH 8.5. The enzyme maintains 50% of its activity after a 15-min incubation at 60 degrees C. Using tripropionin or vinyl esters as substrates, SXL does not present the interfacial activation phenomenon. Unlike many lipases, SXL is able to hydrolyse its substrate in the presence of bile salts or amphiphilic proteins. SXL is a serine enzyme, which is inhibited by THL.  相似文献   

8.
Isolation and Characterization of a Staphylococcal Lipase   总被引:1,自引:1,他引:0       下载免费PDF全文
A number of coagulase-negative staphylococci isolated from human skin were found to produce lipase. Lipolytic activity appeared in the growth medium during the stationary phase of growth but did not appear as a result of autolysis of the cells. Maximal lipase synthesis was obtained when the medium was adjusted to pH 7.5 before inoculation. The purified enzyme hydrolyzed tributyrin and tridecanoin most actively, and a relatively high rate of hydrolysis of triolein was also noted. The optimal activity of the purified lipase was at pH 7.5. The characteristics of the concentrated crude enzyme and purified lipase were compared.  相似文献   

9.
The lipase purified from Pseudomonas fragi 22.39 B hydrolyzed not only triglycerides but also synthetic esters such as Tween, Span and methyl oleate. Of the saturated monoacid triglycerides tested, tributyrin was hydrolyzed most quickly. The lipase did not produce 1,3-diolein as a hydrolysis product from triolein. The addition of the Ca2+ ion to the reaction mixture promoted the hydrolysis rate for triglycerides and monoesters with longer-chain fatty acids (C14, C16, C18). The enzyme could hydrolyze various kinds of natural fats and oils, and the extent their hydrolysis reached above 90%.  相似文献   

10.
A novel lipolytic enzyme was isolated from a metagenomic library obtained from tidal flat sediments on the Korean west coast. Its putative functional domain, designated MPlaG, showed the highest similarity to phospholipase A from Grimontia hollisae CIP 101886, though it was screened from an emulsified tricaprylin plate. Phylogenetic analysis showed that MPlaG is far from family I.6 lipases, including Staphylococcus hyicus lipase, a unique lipase which can hydrolyze phospholipids, and is more evolutionarily related to the bacterial phospholipase A(1) family. The specific activities of MPlaG against olive oil and phosphatidylcholine were determined to be 2,957 ± 144 and 1,735 ± 147 U mg(-1), respectively, which means that MPlaG is a lipid-preferred phospholipase. Among different synthetic esters, triglycerides, and phosphatidylcholine, purified MPlaG exhibited the highest activity toward p-nitrophenyl palmitate (C(16)), tributyrin (C(4)), and 1,2-dihexanoyl-phosphatidylcholine (C(8)). Finally, MPlaG was identified as a phospholipase A(1) with lipase activity by cleavage of the sn-1 position of OPPC, interfacial activity, and triolein hydrolysis. These findings suggest that MPlaG is the first experimentally characterized phospholipase A(1) with lipase activity obtained from a metagenomic library. Our study provides an opportunity to improve our insight into the evolution of lipases and phospholipases.  相似文献   

11.
A gene that codes for a novel intracellular poly-3-hydroxybutyrate (PHB) depolymerase has now been identified in the genome of Bacillus thuringiensis subsp. israelensis ATCC 35646. This gene, previously annotated as a hypothetical 3-oxoadipate enol-lactonase (PcaD) gene and now designated phaZ, encodes a protein that shows no significant similarity with any known PHB depolymerase. Purified His-tagged PhaZ could efficiently degrade trypsin-activated native PHB granules as well as artificial amorphous PHB granules and release 3-hydroxybutyrate monomer as a hydrolytic product, but it could not hydrolyze denatured semicrystalline PHB. In contrast, purified His-tagged PcaD of Pseudomonas putida was unable to degrade trypsin-activated native PHB granules and artificial amorphous PHB granules. The B. thuringiensis PhaZ was inactive against p-nitrophenylpalmitate, tributyrin, and triolein. Sonication supernatants of the wild-type B. thuringiensis cells exhibited a PHB-hydrolyzing activity in vitro, whereas those prepared from a phaZ mutant lost this activity. The phaZ mutant showed a higher PHB content than the wild type at late stationary phase of growth in a nutrient-rich medium, indicating that this PhaZ can function as a PHB depolymerase in vivo. PhaZ contains a lipase box-like sequence (G-W-S(102)-M-G) but lacks a signal peptide. A purified His-tagged S102A variant had lost the PHB-hydrolyzing activity. Taken together, these results indicate that B. thuringiensis harbors a new type of intracellular PHB depolymerase.  相似文献   

12.
The possibility that some factor in serum changes the substrate specificity of purified human plasma carboxyl esterase, which hydrolyzes the short chain fatty acid ester, tributyrin, was investigated. The purified carboxyl esterase from human plasma hydrolyzed 48 mmol of tributyrin/mg of protein/h, monoolein at 1560 mumol of released fatty acids/mg of protein/h, diolein at 133 mumol of released fatty acids/mg of protein/h, and triolein at less than 10 mumol of released fatty acids/mg of protein/h. When human serum was applied to phenyl-Sepharose, a triolein hydrolysis-promoting factor (THPF) for purified carboxyl esterase was bound to the gel and was eluted with water. This partially purified human serum THPF enhanced carboxyl esterase-catalyzed triolein hydrolysis about 30-fold, diolein hydrolysis 2-fold, and monoolein hydrolysis 1.5-fold. Hydrolysis of triolein in very low density lipoproteins (d less than 1.006) and intermediate lipoproteins (1.006 less than d less than 1.019) by carboxyl esterase was also enhanced by addition of THPF. THPF activity was reduced by treatment of delipidation, but resistant to trypsin treatment or heating at 50 degrees C. These results indicated that serum carboxyl esterase can hydrolyze the long chain fatty acid ester, triolein, in the presence of triolein hydrolysis-promoting factor in serum.  相似文献   

13.
Staphylococcus aureus lipase (SAL) is known to possess broad substrate specificity for triacylglycerides. We found that a sub-minimum inhibitory concentration of farnesol (1000 mg L(-1)) inhibits this lipase activity on a Mueller-Hinton agar containing 1% Tween substrates. A quantitative lipase assay using p-nitrophenyl palmitate (pNPP) revealed that the inhibitory action of farnesol appears to be the result of the inhibition of lipase activity rather than of its secretion into the culture medium. The inhibition was observed in all the tested 8 methicillin-susceptible S. aureus and 31 methicillin-resistant S. aureus clinical isolates. Using homogeneous lipase purified by hydrophobic interaction chromatography, it was revealed that farnesol could competitively inhibit the lipase activity against the substrate pNPP.  相似文献   

14.
A procedure for the purification of a very hydrophobic lipase from Pseudomonas sp. strain ATCC 21808 was elaborated by avoiding the use of long-chain detergents in view of subsequent crystallization of the enzyme. The purification procedure included chromatography on Q-Sepharose in the presence of n-octyl-beta-D-glucopyranoside, Ca2+ precipitation of fatty acids, and Octyl-Sepharose chromatography. The enzyme was purified 260-fold to a yield of 35% and a specific activity of 3,300 U/mg. The molecular weight was determined as 35,000; a polyacrylamide gel under nondenaturing conditions revealed a band at 110,000, and the isoelectric point proved to be at 4.5 to 4.6. The lipase crystallized with different salts and ethylene glycol polymers in the presence of n-octyl-beta-D-glucopyranoside and one alkyloligooxyethylene compound (CxEy) in the range from C5E2 to C8E4. The crystals diffract to a resolution of about 0.25 nm. Precession photographs revealed that they belong to space group C2 with lattice constants of a = 9.27 nm, b = 4.74 nm, c = 8.65 nm, and beta = 122.3 degrees, indicating a cell content of one molecule per asymmetric unit of the crystal. In hydrolysis of triglycerides, the lipase showed substrate specificity for saturated fatty acids from C6 to C12 and unsaturated long-chain fatty acids. Monoglycerides were hydrolyzed very slowly. The N-terminal sequence is identical to that of the lipase from Pseudomonas cepacia. Treatment with diethyl-p-nitrophenylphosphate affected the activities toward triolein and p-nitrophenylacetate to the same extent and with the same velocity.  相似文献   

15.
We describe a Tn551 chromosomal insertion in Staphylococcus aureus S6C that results in sharply reduced expression of extracellular lipase. With Tn917 as a probe, the insertion in the original mutant (KSI905) was localized to a 12.6-kb EcoRI DNA fragment. The 12.6-kb fragment was cloned and used as a probe to identify a 26-kb EcoRI fragment containing the Tn551 insertion site in the S6C parent strain. Restriction endonuclease analysis of the 12.6- and 26-kb EcoRI fragments confirmed that the Tn551 insertion in KSI905 was accompanied by a deletion of 18.7 kb of chromosomal DNA. Tn551 was transduced from KSI905 back into the S6C parent strain. All transductants exhibited the same lipase-negative (Lip-) phenotype and contained the same mutation with respect to both the insertion and the 18.7-kb deletion. The inability to produce lipase was not caused by disruption of the lipase structural gene, since all Lip- mutants carried intact copies of geh. Moreover, the Tn551 insertion was localized to a region of the staphylococcal chromosome at least 650 kb from geh. Taken together, these results suggest that the Tn551 insertion occurred in a region of the chromosome encoding a trans-active element required for the expression of extracellular lipase. A 20-bp oligonucleotide corresponding to a sequence within the region encoding RNA II near the Tn551 insertion site in ISP546 (H.L. Peng, R.P. Novick, B. Kreiswirth, J. Kornblum, and P. Schlievert, J. Bacteriol. 170:4365-4372, 1988) and a 1.75-kb DNA fragment representing the region encoding RNA III were used as gene probes to show that the Tn551 insertion did not occur in the agr locus. We conclude that the genetic element functions independently of agr or as an unrecognized part of that regulatory system.  相似文献   

16.
Commercial lipase (triacylglycerol lipase, EC 3.1.1.3) of Pseudomonas cepacia (Amano) has been purified to homogeneity by a single chromatography on phenyl Sepharose. The eluted lipase crystallized spontaneously at 4°C in the eluent, containing 58–69% 2-propanol. The yield of the lipase was 87–100% and the specific activity during the hydrolysis of triolein 5800 U/mg protein. This protein has a molecular weight of 34.1 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its purity was determined by SDS-Page and capillary zone electrophoresis to be ≥ 99%. Immobilization on Sepharose increased its stability in organic solvents. This lipase of P. cepacia differs from that of other Pseudomonas strains in respect of substrate specificity and during crystallization. It exhibits a high stability in organic solvents and supercritical carbon dioxide.  相似文献   

17.
Environmental DNA libraries prepared from three different soil samples were screened for genes conferring lipolytic activity on Escherichia coli clones. Screening on triolein agar revealed 1 positive clone out of 730,000 clones, and screening on tributyrin agar revealed 3 positive clones out of 286,000 E. coli clones. Substrate specificity analysis revealed that one recombinant strain harbored a lipase and the other three contained esterases. The genes responsible for the lipolytic activity were identified and characterized.  相似文献   

18.
Summary The intracellular lipase from a strain of Lactobacillus brevis was partially purified and properties of the enzyme studied. Of the simple triglycerides, tripropionin was hydrolysed most easily by the enzyme as compared to others such as tributyrin, tricaproin and tricaprylin. Of the natural triglycerides such as butter oil and coconut oil, the former was degraded more readily than the latter. Among unsaturated triglycerides, the enzyme preferentially hydrolysed triolein as compared to olive oil. Highest enzymatic activity was observed at 30° C after 3.5 h incubation at pH 6.5. Salts of manganese, magnesium, sodium and calcium stimulated lipase activity while silver, mercury and Zinc were inhibitory. The enzyme was completely inactivated at 62.8° C after 30 min and at 71.7° C after 16 sec.  相似文献   

19.
Pseudomonas, being the common inhabitant of colder environments, are suitable for the production of cold-active enzymes. In the present study, a newly isolated strain of Pseudomonas from cold desert site in Indian Himalayan Region, was investigated for the production of cold-active lipase. The bacteria were identified as Pseudomonas proteolytica by 16S rDNA sequencing. Lipase production by bacteria was confirmed by qualitative assay using tributyrin and rhodamine-B agar plate method. The bacterium produced maximum lipase at 25 °C followed by production at 15 °C while utilizing olive, corn, as well as soybean oil as substrate in lipase production broth. Enzyme produced by bacteria was partially purified using ammonium sulphate fractionation. GBPI_Hb61 showed aggregation behaviour which was confirmed using several techniques including gel filtration chromatography, dynamic light scattering, and native PAGE. Molecular weight determined by SDS-PAGE followed by in-gel activity suggested two lipases of nearly similar molecular weight of ~50 kDa. The enzyme showed stability in wide range of pH from 5 to 11 and temperature up to 50 °C. The enzyme from GBPI_Hb61 exhibited maximum activity toward p-nitrophenyldecanoate (C10). The stability of enzyme was not affected with methanol while it retained more than 75% activity when incubated with ethanol, acetone, and hexane. The bacterium is likely to be a potential source for production of cold-active lipase with efficient applicability under multiple conditions.  相似文献   

20.
The gene encoding the extracellular lipase of Staphylococcus xylosus (SXL) was cloned using PCR technique. The sequence corresponding to the mature lipase was subcloned in the pET-14b expression vector, with a strong T7 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. High level expression of the lipase by Escherichia coli BL21 (DE3) cells harbouring the lipase gene containing expression vector was observed upon induction with 0.4 mM IPTG at 37 degrees C. One-step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified His-tagged SXL was 1500 or 850 U/mg using tributyrin or olive oil emulsion as substrate, respectively. It has been proposed that the region near the residue Asp290 could be involved in the selection of the substrate. Therefore, we also mutated the residue Asp 290 by Ala using site-directed mutagenesis. The mutant SXL-D290A was overexpressed in E. coli BL21 (DE3) and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged SXL-D290A mutant was 1000 U/mg using either tributyrin or olive oil emulsion as substrate. A comparative study of the wild type (His(6)-SXL) and the mutant (His(6)-SXL-D290A) proteins was carried out. Our results confirmed that Asp290 is important for the chain length specificity and catalytic efficiency of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号