首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
2.
3.
4.
5.
6.
7.
In the developingDrosophilaeye,BarH1andBarH2, paired homeobox genes expressed in R1/R6 outer photoreceptors and primary pigment cells, are essential for normal eye morphogenesis. Here, we show evidence thatBarH1ectopically expressed under the control of thesevenlessenhancer (sev-BarH1) causes two types of cone cell transformation: transformation of anterior/posterior cone cells into outer photoreceptors and transformation of equatorial/polar cone cells into primary pigment cells.sev-BarH1repressed the endogenous expression of theroughhomeobox gene in R3/R4 photoreceptors, while theBarH2homeobox gene was activated bysev-BarH1in an appreciable fraction of extra outer photoreceptors. In primary pigment cells generated by cone cell transformation, the expression ofcut,a homeobox gene specific to cone cells, was completely replaced with that ofBarhomeobox genes. Extra outer photoreceptor formation was suppressed and enhanced, respectively, by reducing the activity of Ras/MAPK signaling and by dosage reduction ofyan,a negative regulator of the pathway, suggesting interactions betweenBarhomeobox genes (cell fate determinants) and Ras/MAPK signaling in eye development.  相似文献   

8.
9.
Eyes absent: A gene family found in several metazoan phyla   总被引:4,自引:0,他引:4  
Genes related to the Drosophila eyes absent gene were identified in vertebrates (mouse and human), mollusks (squid), and nematodes (C. elegans). Proteins encoded by these genes consist of conserved C-terminal and variable N-terminal domains. In the conserved 271-amino acid C-terminal region, Drosophila and vertebrate proteins are 65–67% identical. A vertebrate homolog of eyes absent, designated Eya2, was mapped to Chromosome (Chr) 2 in the mouse and to Chr 20q13.1 in human. Eya2 shows a dynamic pattern of expression during development. In the mouse, expression of Eya2 was first detected in 8.5-day embryos in the region of head ectoderm fated to become the forebrain. At later stages of development, Eya2 is expressed in the olfactory placode and in a variety of neural crest derivatives. In the eye, expression of Eya2 was first detected after formation of the lens vesicle. At day 17.5, the highest level of Eya2 mRNA was observed in primary lens fibers. Low levels of Eya2 expression was detected in retina, sclera, and cornea. By postnatal day 10, Eya2 was expressed in secondary lens fibers, cornea, and retina. Although Eya2 is expressed relatively late in eye development, it belongs to the growing list of factors that may be essential for eye development across metazoan phyla. Like members of the Pax-6 gene family, eyes absent gene family members were probably first involved in functions not related to vision, with recruitment for visual system formation and function occurring later. Received: 23 November 1996 / Accepted: 25 February 1997  相似文献   

10.
We previously cloned and characterized the Drosophila gene, tincar (tinc), which encodes a novel protein with eight putative transmembrane domains. Here, we have studied the expression pattern and functions of tinc during developmental processes. tinc mRNA is expressed in the central and peripheral nervous systems, and midgut during embryogenesis. In the third-instar larval eye disc, tinc mRNA is strongly expressed in all the differentiating ommatidial cells within and in the vicinity of the morphogenetic furrow. Loss-of-function analysis using the RNA-interference method revealed severe defects of eye morphogenesis during the late developmental stages. Our results suggested that tinc may have an indispensable role in the normal differentiation of ommatidial cells.Edited by C. Desplan  相似文献   

11.
12.
13.
14.
The development of multicellular embryos depends on coordinated cell-to-cell signalling events. Among the numerous cell-signalling pathways, fibroblast growth factors (FGFs) are involved in important processes during embryogenesis, such as mesoderm formation during gastrulation and growth. In vertebrates, the Fgf superfamily consists of 22 family members, whereas only few FGFs are contained in the less complex genomes of insects and worms. In the recently sequenced genome of the beetle Tribolium, we identified four Fgf family members representing three subfamilies. Tribolium has Fgf1 genes that are absent in Drosophila but known from vertebrates. By phylogenetic analysis and microsynteny to Drosophila, we further classify Tc-fgf 8 as an ancestor of pyramus and thisbe, the fly Fgf8 genes. Tc-fgf8 expression in the growth zone suggests an involvement in mesoderm formation. In the embryonic head, expression of Tc-fgf8 subdivides the brain into a larger anterior and a smaller posterior region. The Fgf Tc-branchless is expressed in the embryonic tracheal placodes and in various gland-like structures. The expression patterns of the only Tribolium Fgf receptor and the adaptor molecule Downstream-of-Fgfr are largely congruent with Tc-Fgf8 and Tc-bnl. Thus, in contrast to Drosophila, only one Fgf receptor canalises Fgf signalling in different tissues in Tribolium. Our findings significantly advance our understanding of the evolution of Fgf signalling in insects.  相似文献   

15.
The Pax6 genes eyeless (ey) and twin of eyeless (toy) are upstream regulators in the retinal determination gene network (RDGN), which instructs the formation of the adult eye primordium in Drosophila. Most animals possess a singleton Pax6 ortholog, but the dependence of eye development on Pax6 is widely conserved. A rare exception is given by the larval eyes of Drosophila, which develop independently of ey and toy. To obtain insight into the origin of differential larval and adult eye regulation, we studied the function of toy and ey in the red flour beetle Tribolium castaneum. We find that single and combinatorial knockdown of toy and ey affect larval eye development strongly but adult eye development only mildly in this primitive hemimetabolous species. Compound eye-loss, however, was provoked when ey and toy were RNAi-silenced in combination with the early retinal gene dachshund (dac). We propose that these data reflect a role of Pax6 during regional specification in the developing head and that the subsequent maintenance and growth of the adult eye primordium is regulated partly by redundant and partly by specific functions of toy, ey and dac in Tribolium. The results from embryonic knockdown and comparative protein sequence analysis lead us further to conclude that Tribolium represents an ancestral state of redundant control by ey and toy.  相似文献   

16.
17.
18.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, βHeavy‐Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (α‐ and β‐Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in α‐ or β‐Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that α‐ and β‐Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas β‐Spectrin is preferentially distributed in the basolateral region. We show that overexpression of β‐Spectrin causes a strong shrinkage of apical membrane domains, and loss of β‐Spectrin causes an expansion of apical domains, implying an antagonistic relationship between β‐Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains. genesis 47:744–750, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Our understanding of epithelial development in Drosophila has been greatly improved in recent years. Two key regulators of epithelial polarity, Crumbs and DE-cadherin, have been studied at the genetic and molecular levels and a number of additional genes are being analyzed that contribute to the differentiation of epithelial cell structure. Epithelial architecture has a profound influence on morphogenetic movements, patterning and cell-type determination. The combination of embryological and genetic/molecular tools in Drosophila will help us to elucidate the complex events that determine epithelial cell structure and how they relate to morphogenesis and other developmental processes.  相似文献   

20.
The molecular genetic dissection of Drosophila eye developmentled to the exciting discovery of a surprisingly large panelof genes and gene activities, which are functionally conservedacross phyla. Little effort has yet been made towards pinpointingnon-conserved gene functions in the developing Drosophila eye.This neglects the fact that Drosophila visual system developmentis a highly derived process. The comparative analysis of Drosophilaeye development within insects can be expected to enhance resolutionand accuracy of between phyla comparisons of eye development,and to reveal molecular developmental changes that facilitatedthe evolutionary transition from hemimetabolous to holometabolousinsect development. Here we review aspects of early Drosophilaeye development, which are likely to have diverged from thesituation in more primitive insects, as indicated by resultsfrom work in the flour beetle Tribolium castaneum and the grasshopperSchistocerca americana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号